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Abstract 
 

The Center for International Rehabilitation (CIR) has programs all over the world to 

provide people in developing countries with the training and equipment they need to supply 

prosthetic devices to local landmine victims. CIR has created a monolimb, which is a lower limb 

prosthesis where the socket and shank are molded from a single piece of thermoplastic 

material. The monolimb can be fabricated on-site with minimal equipment at a low-cost.  The 

shank portion of the device, which replaces the tibial region of the leg, was investigated 

through a finite element analysis computer program, COSMOSWorks. 

The current prosthetic device utilized by CIR uses a hollow, cylindrical shape with a rib 

on the posterior side as the overall shank design.  This study combined varying circular outer 

diameters and rib lengths to determine which combination of parameters contributed to lower 

overall von Mises stresses and minimal displacement. Four hollow elliptical cross sectional 

shapes of different minor and major diameters were also modeled and compared to the results 

of the circular parameter study.  

The models were input into COSMOSWorks to perform a static analysis on each of the 

models and the results were displayed through contour plots.  The output for each model was 

analyzed and compared to determine the maximum stresses and overall stress distributions.  

The displacement present was examined, paying particular attention to the flexibility across the 

shank, as the displacement can mimic that of natural ankle movement. The ISO Test Standard 

10328, which details the necessary structural testing for lower limb prostheses, was used as the 

basis for testing. 

The final results compared the overall stress distributions and displacement of each of 

the models in COSMOSWorks to determine which shape would best withstand the ISO Test 

Standard 10328 specified load.  The results determined that an increase in diameter and rib 

length positively influences the von Mises stress results and displacement by decreasing their 

values throughout the shank.   
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Executive Summary 
The Center for International Rehabilitation (CIR) is a Chicago based non-profit 

organization, whose mission is “to assist people with disabilities worldwide in achieving their 

full potential” (CIR 2007). The creation of the CIR began in 1996 when Dr. William Kennedy 

Smith founded the organization Physicians Against Land Mines (PALM).   In 1997, one year after 

its inception, this organization received the Nobel Peace Prize.  The CIR was opened in 1998 by 

Physicians Against Land Mines (PALM) to expand its facilities to include victim assistance in 

rehabilitation services and advocacy.  The center is now present in six countries, educating over 

seventy students to date who treat approximately 8,600 amputees yearly. 

 CIR is currently supplying low-cost prosthetics to developing countries around the 

world.  They provide the people in these countries with the training and equipment they need 

to supply prosthetic devices to local landmine victims. CIR has created a monolimb, which is a 

lower leg prosthesis where the socket and shank are molded from a single piece of 

thermoplastic material. The monolimb can be fabricated on-site with minimal equipment at a 

low-cost.  The shank portion of the device, which replaces the tibial region of the leg, was 

investigated through a finite element analysis computer program, COSMOSWorks. 

The analysis compared circular shanks with and without the addition of a rib on the 

posterior end of the shank with different combinations of diameters and rib lengths.  These 

results were furthered compared to the data for elliptical shanks.  The circular shank is the 

design currently utilized for the CIR’s outreach programs.  The diameters tested were 48.5 mm, 

53.5 mm, 58.5 mm, and 63.5 mm; the minor diameters of the elliptical shanks were identical to 

these diameters and an aspect ratio of 1.55 was applied to determine the major diameter. Rib 

lengths of 0 mm, 10 mm, and 20 mm were tested for each circular diameter.  “Changes in shank 

geometry can alter the stress distribution within the monolimb and at the residual limb-socket 

interface and, respectively, affect the deformability and structural integrity of the prosthesis 

and comfort perceived by amputees” (Lee, JRRD 2004).  Therefore, the overall objective was to 

determine which combination of parameters would allow the monolimb to withstand the loads 

specified by the ISO Test Standard 10328 Ultimate Static P5 test.   
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The parameters of this study were chosen to maximize the testing conditions.  The 

height of the shank was chosen by applying the maximum distance between the ankle and knee 

planes in the ISO Test Standards, 420 mm, Based on  anthropometric data, 60 mm was 

subtracted from this length as it is the minimum length required of a residual limb to retain a 

fully functioning knee.  This height of 360 mm was applied to each of the models.  Next, twelve 

circular models and four elliptical models of this height were built using the three-dimensional 

modeling program, Solidworks.  A test plate was added to the distal end of each shank by 

bonding the two components to one another.  This plate was added to provide a point of 

application for the off-set load.  

 The ISO Test Standard 10328 was consulted to ensure that our testing procedure 

complied with the guidelines set forth for lower limb prostheses.  The coordinate system, load 

location, and force load components were all extracted from the standards and applied to our 

shank models.  Two loading conditions were applied to each model to account for two of the 

main stages of the gait cycle, heel strike and toe off.  Heel strike is considered Loading 

Condition I, while toe off is considered Loading Condition II.  

 The models were then analyzed through the finite element analysis program, 

COSMOSWorks.  This program output data regarding the stress values throughout the shank as 

well as the displacement.  The stress distributions were visible through contour plots where 

different stress levels corresponded to different colors, allowing for the visual depiction of 

stresses present throughout the shank.  One point in particular was probed on each of the 

models to provide consistency throughout our comparisons.  This point was located 25 mm 

below the proximal end of the shank on the plane where the highest stresses were expected to 

occur.   

The von Mises stress failure criteria was applied by comparing the von Mises stresses at 

the probed point for each model to the Yield Strength of the thermoplastic material.  Stress 

values which fell below this limit were considered to have successfully withstood the loading 

conditions for the ISO Test Standard 10328.  Those models whose stress values were above the 

Yield Strength were considered to fail the test and it was recommended that prosthetic devices 

of this size not be used. 
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 Next, displacement was analyzed to determine the level of flexibility within the shank.  

Displacement was investigated because flexibility in the shank can mimic that of natural ankle 

motion, which is a desirable quality in a prosthetic.  This analysis demonstrated how the shank 

responds to the loading and which set of parameters provided sufficient rigidity.   Data 

regarding displacement were obtained by probing equidistant points along the height of the 

shank and exporting these data to Excel.  The data were then manipulated to determine the 

resultant displacement present for each shank to understand the effect the rib length had on 

the displacement values.  Next, the in-plane displacement was found to establish the 

deformation caused by the bending loads and the out-of-plane displacement was calculated to 

better understand the effect of the torsional and transverse loads on the shank.   

 The analysis highlighted which set of parameters could minimize displacement and von 

Mises stresses in response to the specified loads.  An increase in diameter was found to 

decrease both von Mises stress values as well as displacement.  Similarly, an increase in rib 

length decreased stress and displacement values throughout the shank.  Through a comparison 

of each of the models per diameter and loading condition, the models with a 0 mm rib were 

consistently found to have the highest stress values, while the elliptical shanks had the lowest 

values in both stress and displacement.  

 Although the von Mises stress and displacement analysis provided data which showed 

that the elliptical performed well under the applied loading conditions, the 53.5 mm shanks and 

higher all fell below the Yield Strength as well as exhibited consistent stress values between 

both loading condition I and II.  Before recommendations were made regarding which shank is 

most appropriate for CIR to use in the field, a material analysis was conducted.  This analysis 

determined the amount of material necessary to fabricate each shank model, while also 

considering the weight differences between the larger and smaller models.  Through this 

analysis, the elliptical shanks were shown to have similar weights to those of the 20 mm ribbed 

shanks of the same diameter.  In the case of the 58.5 mm and 63.5 mm, the elliptical models 

had more mass than those of the circular shank models, making them a less desirable option for 

amputees.  These models also required more material, which may contribute to increased costs 
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for CIR when purchasing material, as they are trying to maximize the use out of their limited 

budget.   

 The recommendation has been made to CIR that they continue to use the hollow 

cylindrical model with a rib design within their programs. It is being recommended that at 58.5 

mm shank with a 20 mm rib should be adopted as it requires a slight increase in amount of 

material, however this model successfully withstood the ISO Test Standard Loading Conditions.  
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Introduction 
 

Prostheses have been in development since the BC era.  There is a natural human desire 

to feel whole and complete, and providing artificial limbs has helped to satisfy this need.  The 

advancement of technology has increased the means of providing such assistance, and injuries 

sustained in wars have brought about many opportunities for experimentation.  It wasn’t until 

the World War I era that inventors really began to drive forward with prosthetic advancements.  

Through World War II, the number of amputees and the need for prostheses increased in 

parallel.  Numerous societies and organizations were created to support prosthetists and their 

designs.  The Veteran’s Administration (VA) has played a significant role in the progress of 

American prosthetics.  They have provided numerous opportunities for people to learn about 

the field and to get involved.  The growth and development of prosthetic devices has continued 

to flourish into the present, as the improvement of the lives of people with disabilities is a 

constant focus.   

 There are millions of individuals living in this world who have suffered from land mines 

or other traumatic events, which have caused amputation.  The majority of these people are 

unable to afford the technology they need to account for their disability.  To address this issue, 

many people have designed prosthetic devices which can be created locally at a low cost.  Many 

of these programs exercise fabrication techniques which can be applied in developing countries 

and taught to people who do not have any previous technical training.  These programs are 

being implemented all over the world by companies such as Prosthetics and Orthotics 

Outreach, Inc., Handicap International, Bhagwan Mahaveer Viklang Sahayata Samiti, and the 

Center for International Rehabilitation.   

 The designs developed for use in developing countries are produced at low cost and 

vary in shape, size, and material.  In some of the designs, the shape of the shank varies from a 

uniform circular shape to a more elliptical shaped limb.  Many of the prosthetic devices are 

supplied to the prosthetist in component form; the tibial length, foot, and socket are separate 

pieces which are assembled in the field for the patient. Many of these designs apply the 
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monolimb design, which is a transtibial prosthesis where the socket and the shank are molded 

from a single piece of thermoplastic material.  CIR has applied this design to their global 

programs by providing the material, fabrication education, and tools.   

The fabrication method used by CIR is the anatomically-based-alignment (ABA) system.  

This method uses a process that is easy to understand, as it needs to be translated into 

numerous languages.  A casting and fabricating kit, which has all of the equipment and 

materials necessary for construction, is distributed to the prosthetist at the local clinic.  There 

are four main processes included in this method: casting, standing alignment, alignment 

transfer, and monolimb fabrication.  A monolimb is “a prosthesis in which the socket and pylon 

are formed from one piece of plastic” (CIR Manual).  The cut of the plastic material is very 

important and exclusive to CIR.  They cut a rectangular piece of thermoplastic material into 

three trapezoidal pieces.  This shape allows the prosthetist to fit the patient while cutting less 

material off for waste.  The alignment process is also very important as it allows the user to 

have correct posture and support from their device. 

 In order to produce prosthetics for developing countries, the material selected must be 

both durable, easy to fabricate, and low cost.  Several of the low cost prosthetics have been 

made from fiber glass because it is a strong, rigid material which is fairly easy to fabricate while 

being affordable.  One of the designs utilizes a plastic bottle and locally available wood to form 

a prosthetic which can easily be created from very cheap and easily accessible materials.  Some 

of the more popular materials used for this application are thermoplastic materials.  

Thermoplastic materials are used because they can be remolded after their initial fabrication.  

This is an advantage because if there are any issues with the original fabrication, the material 

can be reheated and remolded.  A polypropylene-polyethylene, both thermoplastic materials, 

co-polymer has been dedicated to this specific low cost prosthetic because it combines the 

rigidity of polypropylene and the flexibility of polyethylene.  This combination provides a strong 

yet comfortable prosthetic limb.  

 To provide CIR with background testing for their prosthetic designs, several different 

shaped cross sectional shanks were tested using Finite Element Analysis (FEA).  Elliptical and 

circular shapes were analyzed through the FEA software program, COSMOSWorks.  The three-
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dimensional models were created in the modeling program, Solidworks and then meshed and 

run in COSMOSWorks.  Loads were applied to the models as detailed in the ISO Test Standard 

10328.  The reaction of the monolimb to specified forces was displayed in the form of contour 

plots.  Stress and displacement contour plots was output and analyzed to better understand the 

reaction of the monolimb to the applied forces.  The various sized cross sections were 

compared in order to draw conclusions regarding which shaped monolimb would be most 

appropriate for use in the field.   
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Background Research 
 

A review of the research and literature regarding low cost prosthetics was undergone to 

provide background information regarding the project to be detailed throughout this report.  

Several areas were researched and have been included in this section, and more research has 

been included in the appendixes.  

In this section, you will find information about the anatomy of the knee, as well as 

information from journal articles regarding various other low cost prosthetics devices currently 

being used in the field or further researched by other organizations. The fabrication techniques 

utilized by CIR has been briefly discussed and the material properties of low cost prosthetics, 

with an emphasis on thermoplastic materials has been included. The Appendixes include 

information regarding the history of prosthetics as well as other programs, similar to CIR, who 

are providing prosthetic solutions to third world countries.  

Anatomy of the Knee 

 

The knee joint is an important aspect to the human anatomy, particularly regarding 

movement, including walking and running.  There are two main bones that are present within 

the knee joint, the femur and the tibia.  The femur rests on the top of the tibia and when these 

two bones come together, the hinge joint of the knee is formed.  It is covered by the patella, 

also known as the kneecap. The patella fits into the groove that is formed when these two 

bones come together.  

The ends of the tibia and the femur are covered by articular cartilage, which acts as 

cushioning between these bones.  The lateral meniscus, which is located on the outer side of 

the knee, and medial meniscus, which is located on the inner side of the knee, are also present 

in the knee joint and they are the shock absorbers between the bones.  

On top of bone and cartilage, there are also ligaments in the knee which help with 

stabilization such as the collateral ligaments and the anterior cruciate ligament (ACL).  The 

collateral ligament limits sideways motion and runs along the side of the knee. The ACL 

connects the tibia and the femur; it limits the rotation and forward motion of the tibia.   Finally, 
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the Posterior Cruciate Ligament (PCL) is located behind the ACL and it limits the backward 

motion of the tibia.  

The knee is a vital joint necessary for walking, running, and many other forms of movement.  

It is a joint which is often preserved during amputation to allow the amputee to use a lower 

limb prosthesis and the function of their own knee to walk again.  For lower limb amputees, 

part of the tibia needs to be preserved.  A minimum of 6 centimeters from the proximal end of 

the tibia must remain for a patient to keep a fully functioning knee joint.  

Present within the knee are ligaments, bones, and cartilage which all contribute to the 

hinge motion of the knee.  Through the directional restriction of the ligaments and the 

cushioning protection of the cartilage, both the tibia and the femur come together to form one 

of the most important joints in the human body. 

Low Cost Prosthetics 
 

 Millions of people undergo amputations every year due to various traumas including 

landmine tragedies.  The most applicable solution to these travesties is to fit the amputees with 

prosthetic devices to counteract their disability.  However, artificial limbs are not easily 

accessible to people in lower income countries because of the high cost associated with 

prosthetics.  Due to this fact, there are many designs being implemented by various outreach 

programs to provide low cost prosthetic systems to developing countries.  These designs use 

various materials, designs, and testing procedures to validate their systems.   

Trans-Tibial Prosthetic Modular Component  

 

Mobility India developed a light weight plastic prosthesis which is comprised of several 

different components to provide people with a full below the knee prosthetic.  This system 

includes a disc, socket adapter, pylon, and nuts and bolts which are used for alignment 

purposes as are displayed in Figure 1.  The components come in separate pieces, which are easy 

to assemble and applied to the patient.  The entire kit is provided for the prosthetist who will 

apply this system to patients.  The separate pieces allow height to be addressed while allowing 

the prosthetic to be aligned properly (Mobility India 2007).   
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Figure 1: Trans-Tibial Prosthetic Modular Component 

 Polypropylene is used for the disc, socket adaptor, and pylon.  Polypropylene was 

chosen as the material for this purpose because it is light weight and cost effective.  To further 

improve the strength of the system, four ribs are carved into the outer diameter of the pylon.  

The pylon has been made in twenty different sizes, which increase in height by a centimeter 

with each size increase.  This has been done to provide a variety of sizes which can incorporate 

a wider range of height differences.  The fabrication process has been made very simple in 

order to ensure that any individual could create it after limited training has been completed 

(Mobility India 2007).    

Mobility India has implemented these prosthetic designs in India in hopes to bring more 

people the tools they need to walk as normally as possible for a much lower cost as commercial 

prosthetics.  They have successfully created a low cost and ultra-low weight prosthetic which 

can be fabricated by people will little experience.  This system will be able to be applied in many 

developing areas throughout our world for an affordable price (Mobility India 2007).   

Simple Prosthetic Device 

 

 The Division of Biomedical Sciences at Wolverhampton University in the United Kingdom 

designed and built a simple, cheap, and effective lower limb prosthesis which can be utilized by 

landmine victims in third world countries.  Their underlying goal was to create an artificial 

device which can be used in developing countries to enable mobility over a short range while 

assisting people to stand and kneel.  The kneeling portion of the design has been incorporated 
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into the final design because many of the users of this device work in the fields and need to 

kneel to properly complete their working tasks (G. Pearce).   A visual depiction of both positions 

has been included in the pictures below, Figure 2 and Figure 3. 

 

Figure 2: Simple Prosthetic-Standing Position (G. Pearce 2007) 

 

Figure 3: Simple Prosthetic-Kneeling Position (G.Pearce 2007) 

There are several components to this design: femoral component, knee component, 

foot, and cross strut.  The thigh component is made using a plastic bottle which can be packed 

with comfortable material to protect the stump of the patient.  A Velcro strap is wrapped 

around the thigh to keep the prosthetic in place.  The tibial component of the device, the shank, 

is made using locally available wood.  This wood is shaped into the proper height and width for 

the patient by the prosthetist.  The cross strut is a bar which can be locked into place to allow 

the limb to be in a standing position or in a bent knee position for kneeling.  The strut is made 

of locally available shaped wood also.  Finally, a rubber component is added to the bottom of 

the wood shank to absorb the ground reaction forces and allow for easier mobility.  Due to its 

simple design and use of available materials, it can be produced easily using basic carpentry 

tools and at a very low cost (G. Pearce).   
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In order to validate the prosthetic system created by the Biomedical Department at 

Wolverhampton University, several tests and analyses were performed on the device.  Using 

“Design Space,” the forces were calculated and stress calculations were conducted.  There were 

several stress tests run on the upper and lower knee joint.  Using the computer software, axial 

stresses, principal stresses, and maximum deformation were all analyzed to determine whether 

or not the device could withstand the necessary forces to be used for a patient to walk with.  

After testing was completed, the device was found to be capable of withstanding the forces 

required for walking; the overall test results indicate that the prosthesis can support an average 

person involved in everyday activities for short distances.   Therefore, the system can 

confidently be implemented in third world countries (G. Pearce).        

Low Cost Composite Prosthetic  

 

 This prosthetic system was designed using low cost fiber reinforced composite materials 

using modern alignment methods to ensure the device was comfortable and durable while 

remaining affordable for less fortunate amputees.  Fiber glass was utilized for this purpose in 

the form of Sheet Molding Components (SMC).  The material is created by combining 

unidirectional fibers are layered on the bottom, followed by layers of randomly oriented fibers.  

This reinforcing of the fibers is adopted because it increases the weight reduction of the system 

while increasing the biofidelic response of the device.  This biofidelic response is similar to the 

“energy storing” properties of some of the more expensive prosthetic materials.  The goal of 

this prosthetic device is to apply the “energy storing” properties to the artificial limb without 

increasing the cost (Bartkus 1994).   

 The design of this system incorporates a flexible action foot, solid composite pylon, and 

a stump socket adaptor.  The pylon is a cylindrical rod which supports the foot at the distal end 

and connects to the socket adapter at the proximal end.  The socket adapter is a plastic piece 

which has been molded to fit the outer contour of the patients’ limb while also securing the 

prosthetic limb to the patient.  An important aspect to this design is that the height of the limb 

can be adjusted by adding a screw to the distal end of the pylon.  In total, an extra 1.5 inches 

can be added at any given time as shown in Figure 4 (Bartkus 1994).  
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Figure 4: Low Cost Composite Prosthetic Device (Bartkus 1994)  

 Glass fiber, vinyl ester, and aluminum have been incorporated into the design of this 

device.  Glass fiber was chosen because of its bending fatigue life, torsional strength, and lower 

cost.  Aluminum was used for the screws which are applied at various points on the limb.  These 

screws can be adjusted to provide the proper alignment for the patient.  Further, alignment 

collars are used to ensure that the pylon is in the correct place to maximize a patient’s gait.  The 

glass fiber pylon can withstand compressive, bending, and torsional loads, which are important 

for a person to use the device for mobility purposes (Bartkus 1994).    

 In order to ensure that the proposed device could withstand the necessary loads 

associated with mobility, testing was completed.  First, material testing was completed to 

compare the different types of materials available for use with prosthetics.  This was done to 

ensure that the most appropriate and cost effective material was chosen for the prosthetic 

limb.  E-fiber glass, carbon fiber-reinforced epoxy, vinyl ester, and polyester-

pultruded/compressive molded rods were all tested to evaluate their properties.  Each material 

was evaluated using compressive, bending fatigue, and static torsion tests.   

 Next, axial bending fatigue tests were performed on the pylon.  The pylon was cycled at 

300 lbs for 1,000 cycles and the load was increased by 50 lbs every 1,000 cycles until failure.  

Static torsion tests were performed by applying an axial moment to the ends of the pylon using 

a torque wrench.  The moment was increased until the prosthetic fractured and angular 

deflection measurements were collected throughout the test.  After the completion of these 
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tests, the E glass-reinforced vinyl ester was chosen because it had good fatigue life, high 

torsional strength, and the cost was much lower than the other materials.   

Finally the assembled prosthetic was tested in a fatigue tester, which simulates walking, 

to ensure that each component works well together and will last for the user during everyday 

use.  The system weighs 1.5 lbs, which is the lowest weight of any system currently on the 

market.  After completion of the tests, many patients have used the system successfully 

without failure and have reported that it is lighter and smoother to walk with many other low 

cost prosthetic devices.   In the end, low cost composite materials keep the cost down for 

prosthetics while also providing some of the energy storing properties. Their ability to be 

compression molded makes them an even more valuable asset to the low cost prosthetics 

industry.  

Elliptical/Circular Shaped Low Cost Prosthetic  

 

 A low cost monolimb has been designed for less fortunate amputees using both circular 

and elliptical shaped shanks.  A monolimb is a transtibial prosthesis where the socket and the 

shank are molded from a single piece of thermoplastic material.  The specific thermoplastic 

material used for this prosthetic limb is polypropylene (PP).  PP was chosen because of its 

strength, ductility, and flexibility.  The flexibility of PP causes the monolimb to deflect during 

walking which simulates ankle joint motion (Lee 2006).   

 The two designs utilized for this prosthetic were an elliptical shank and a circular shank, 

both with uniform cross sections throughout the entire shank.  Similarly, the sockets used were 

identical and used vacuum sealing methods (Lee 2006).  
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Figure 5: Circular and Elliptical Prostheses (Lee 2006) 

Testing was done to determine which design provided the patient with a smoother gait 

while wearing the prosthetic.  The testing was performed according to the ISO Standard 10328.  

Four male transtibial amputees were asked to walk using the prosthetic limb and the forces 

were analyzed, as was the gait of the individual.  The subjects were blindfolded and asked to 

walk with each of the prostheses.  After they had tested them several times, they were asked to 

rate them on several different properties: comfort, stability, ease of walking, flexibility, and 

weight.  As a supplement to the real time feedback from patients, Finite Element Analysis and 

the Taguchi Method were both utilized as tools to measure the reliability and flexibility of the 

two types of monolimb cross sections (Lee 2006).  Fatigue testing was also performed on the 

monolimb, emphasizing the “heel on” and “toe off” portion of the gait cycle.  The test set up is 

shown below as Figure 6. 
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Figure 6: Fatigue Test Set Up (Lee 2006) 

 After the data was compiled, the elliptical system was found to perform the best in 

several different areas.  The Elliptical monolimb weighed less and had higher flexibility than the 

circular design.  During the gait analysis, the walking speed, stance time, and swing time were 

consistent between the two models; however, the step symmetry was better in the elliptical 

system.  The subjects found the elliptical system to be more comfortable, stable and flexible 

while being lighter and easier to walk with (Lee 2006).    

 Through the testing, it was demonstrated that the elliptical system was a better system 

than the circular system.  The advantage to using a monolimb is its low weight, low cost, and 

similar properties to the “energy storing” advanced prosthetics.  In the end, the elliptical 

monolimb system led to an increase in comfort, a decrease in the energy required, and an 

increased level of control.  It was also revealed that the flexibility increases as the cross 

sectional area of the monolimb shank is reduced (Lee 2006).   

Jaiper Below Knee Prosthetic 

 

 The Jaiper Below the Knee Prosthetic system is comprised of the Jaiper foot, the total 

contact socket, the shank, and the suspension belt as shown in Figure 7.  The materials used 

throughout the system are primarily rubber, High Density Polyethylene (HDPE), and leather.  

The foot is made of a rubber material and is molded to resemble a human foot.  The total 

contact socket is made of an HDPE sheet which is thermoformed around a plaster mold of the 
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patient’s existing stump.  When molding the socket, special attention is paid to the tendons 

around the knee.  The shank is also made using HDPE pipes in three different diameters: 75 

mm, 90 mm, and 110 mm.  These varying diameters have been incorporated into the design to 

account for the weight range of patients.  The larger the diameter, the more weight the shank 

can successfully handle.  Finally, the suspension belt is made of leather.  The suspension belt 

has joints at two places to allow an increased range of motion while squatting and to ensure 

that the prosthetic limb stays in place on the patient (BMVSS). 

 

Figure 7: Jaiper Below Knee Prosthetic (BMVSS 2007) 

Fabrication Process 
 

 The Center for International Rehabilitation (CIR) uses the anatomically-based-alignment 

(ABA) system to properly cast a transtibial amputee.  There are two varieties of this system: 

standing and supine.  The supine system is more appropriate for weak patients and bilateral 

amputees.  The standing system is better for stronger patients who are capable of holding up 

their own weight for a certain period of time.  The standing system is explained in further detail 

in this report. 

 There are a number of measuring techniques that must be followed before the actual 

casting process can begin.  The most important rule to remember is that anatomical landmarks 

must remain stationary.  If they do not stay in their exact locations, the markings will be 

incorrect and the alignment will not be precise.  There are four measurements that are made 

for dimensioning: medio-lateral (ML), anterior-posterior (AL), length of the tibia, and length of 

the residual limb. The elbow height, from the floor to the bottom of the elbow at a 90° angle, 

and width of hips must also be measured for use in the standing alignment process.   
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The preliminary casting techniques require a list of materials to be used in the process: 

nylon socks, approximately 120cm of 24mm elastic webbing, clamps, indelible pencil, 1 roll 

15cm standard plaster, 1-2 rolls of elastic plaster, scissors, Vaseline, 52cm Dacron strap, pre-

shaped clay reliefs, and a casting garment or 15cm elastic bandage.  These materials and 

equipment are all used to cast the negative of the residual limb.  This cast will be used to 

ensure proper alignment of the prosthesis. 

The process for casting is rather short, but it plays the most significant role in molding 

the components that are extremely specific to each patient.  The process starts by applying a 

damp nylon sheet over the residual limb.  This sheet facilitates the placement and adherence of 

clay buildup for pressure relief.  The knee center is then marked on this nylon sheet, at a point 

20mm above the medial tibial plateau (MTP).  This measurement is transferred around the 

knee using a square to mark the lateral and anterior surfaces.  There are nine other areas that 

can be marked for improved application of the clay reliefs; these areas are not necessary but 

are helpful in the fitting process.  The head of the fibula is an important feature to mark, as it 

could be a main weight-bearing area if improperly marked.  Pressure reliefs are necessary to 

evenly distribute the weight-bearing throughout the socket of the prosthesis.  These are 5mm 

thick clay reliefs that are measured and fit for each individual to provide the support they need.   

To complete the casting process, a latex casting balloon is used to cover the residual 

limb.  Six layers of plaster are added to make a splint that is slightly longer than half the 

circumference of the patella.  Thumb indents are made on the plaster to establish the level of 

the patellar tendon.  Since the following alignment techniques are done in the standing 

position, a 5-ply plaster splint needs to be added to allow for slight weight bearing on the distal 

end of the residual limb.  The casting process is now complete and the patient is ready for 

alignment. 

The standing alignment system, shown below in Figure 8, utilizes two structural 

components: the standing support fixture and the residual limb stand.  The materials needed 

for these assemblies are: 2 weight bags, frame, 2 hitch pins with cotter pins, alignment bar 

components, mats, 3 extension bars, platform,  and a base.  The standing support fixture is the 

first to be constructed, and is placed on a grid-lined mat at the appropriate end points.  The 
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fixture is placed at a width that accommodates average hip widths (38-49.5cm), with the sand-

filled weight bags stabilizing the cross-bars of the structure.  Adjustments must be made 

according to hip width and elbow height to ensure that the structure provides the proper 

support.  The patient must stand on the mat with the center of the patient’s body directly over 

the center line on the mat.   

 

Figure 8: Standing Alignment System (CIR Manual) 

Next, the residual limb platform is adjusted to accommodate for correct height.  It 

should be altered to a height that allows the patient’s residual limb to comfortably rest on the 

top of the platform.  The height and rotation of the platform can be adjusted using the 

extension bars and collar at the base.  It is very important to keep the hips at the same height 

during this process, so that they will be level when the prosthesis is complete.  The centerline of 

the patient’s body should be directly over the centerline on the mat.  The distance from the 

centerline to both knees should be 6-10cm.  Using the alignment bar, the correct AP positioning 

and the ML positioning are verified.  Both axes should be re-checked at the end to ensure that 

there were no minor movements during the positioning process.  Once the alignment marks 

have been made on both corresponding axes, the cast can carefully be removed. 

Transferring the alignment is the next section in the fitting and alignment process.   A 

commercially available Vertical Fitting Jig (VFJ) is used to transfer the alignment from the cast 

to the positive model.  Alignment is an important aspect in designing a prosthetic device; it is 

what allows the user to have the correct posture and support from their device.  The following 

materials are required to complete this alignment portion of the process: mandrel, pipe 

adapter, mandrel collar, t-handle hex wrench, plastic spacer, cast with Dacron strap, foot, ankle 
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busing, base plate, laser level, indelible pencil, flexible ruler, hole-saw or spade bit, utility knife, 

dish soap or talcum powder, tape, and a plaster mixing bowl. 

Establishing the pylon (prosthetic shank) location is the first step in the alignment 

process.  The coronal and sagittal alignment lines are extended using the ruler and pencil.  They 

should perpendicularly intersect on a point, providing a mark through which the mandrel hole is 

drilled.  The alignment lines must coincide with the centerline of the mandrel in both the 

coronal and sagittal views, which should be an automatic result due to the drill hole at the 

intersection point.  Any necessary adjustments can be made in the AP/ML directions as well as 

the flexion and abduction/adduction angles.  Once the appropriate alignment is reached, it 

must be secured in place using the four screws on the cast holder arm.  A laser is then used to 

double check the alignment lines in the coronal and sagittal views.  

The final stage before the creation of the actual monolimb is to craft the positive model.  

The first step is to lower the mandrel collar and wrap the bottom of the cast with tape.  Plaster 

is then poured into the cast, taking about thirty minutes to set.  After the plaster has hardened, 

the mandrel vice secures the positive model while the plaster cast is removed.  Once this 

positive model has been created, the AP and ML dimensions must be checked to ensure no 

variation from the original alignment.  Once this has been verified, all irregularities are filled 

and the model is smoothed. 

At this point, the alignment and casting processes have been completed.  The 

fabrication of the monolimb is the final step in fitting the prosthesis to the patient.  The 

definition of a monolimb, according to CIR, is “a prosthesis in which the socket and pylon are 

formed from one piece of plastic” (CIR Manual).  The following tools and equipment are needed 

for the fabrication process: oven and gloves, vacuum, pump, grinder, cast cutter, hand saw, 

mandrel vise, utility knife, and scissors.  The monolimb is made from a thermoplastic material, 

however there are a number of other materials necessary for its fabrication including: mandrel 

with positive model, aluminum ankle bushing, nylon stockinet, talcum powder, scissors, string, 

tape, grease pencil, utility knife, plaster chisel and hammer, steel heat plate, anti-rotation pin 

template, 10mm x 25mm dummy bolt, 10mm x 500mm extractor bolt, 10mm x 70mm ankle 

bolt, Allen wrench, and a ratchet wrench with 17mm socket.   
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The first step in this section is to prepare the mandrel which must be polished with steel 

wool on the lower portion.  The positive end is then covered in talcum powder with a stockinet 

added over the top.  The 10mm dummy bolt is screwed into the ankle bushing, which is then 

slid over the distal end of the mandrel.  The bushing must be rotated so that the flat sides are 

parallel to the line of progression.  Finally, the vacuum line is connected to the top end of the 

mandrel.  

 

Figure 9: Trapezoidal Plastic Cut (CIR Manual) 
 As shown in Figure 9 above, the next step is to cut the thermoplastic sheet into three 

trapezoidal sections.  The bases of these trapezoids are measured at 20cm and 51 cm.  These 

trapezoidal pieces will later be used to create the actual monolimb.  The plastic pieces must be 

heated in the oven for approximately 27 minutes to begin the process known as “drape-

forming”.  The plastic should be clear when it is completely heated and ready for drape-

forming.  The plastic seam is centered along the posterior aspect of the mandrel and the 

positive model, and then sealed at both ends.  Starting at the distal end, the plastic is pinched 

together up to the proximal end.  To draw the plastic into the model, the vacuum is turned on 

for twenty minutes.  Once tight, the extra plastic is cut, leaving a 20mm seam from the bottom 

of the mandrel interface.  

 The next step, extracting the monolimb, starts with marking the trimlines.  These lines 

must be traced around the top of the socket to mark the location of the cut.  The cast cutter is 

used to remove the plastic from around the mandrel.  The sander is used to grind down the 

distal end until the top of the bolt and the end of the ankle bushing are visible.  The 10mm x 

25mm bolt must be removed and replaced with the 10mm x 500mm extraction bolt.   
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 In the final preparation stages, the sander is used to smooth and buff the trimlines, 

leaving a posterior seam of approximately 20mm.  The distal end is flattened using a heated 

steel plate, after 15 minutes in the oven, and a heat gun.  The distal end is heated until the 

plastic is semi-clear, then the dummy bolt must be inserted through the whole of the steel 

plate and tightened to the ankle bushing.  The monolimb must now be prepared for delivery 

and the attachment of the foot.  The anti-rotation pin is attached to the bottom of the 

monolimb to ensure proper alignment for the foot, and the lock-tite ankle bolt is applied.  Once 

the necessary suspension sleeve or suspension cuff is added, the monolimb is ready for delivery 

to the patient.  

 Each monolimb is designed for a specific patient, and this process ensures that each will 

receive the best fitting prosthesis.  The devices are designed to provide support and stability so 

that each user feels as though it is a true extension of their body.  The process that was 

previously outlined in the section uses simple and effective techniques to provide such a 

comfort to the patients.   
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Materials 
 

The material selection for prosthetic devices is important because the material directly 

affects the comfort of the socket and the level of mobility for the patient.  The strength and 

weight of the material contribute to the comfort of the patient while walking.  There is a 

necessary balance between enough strength without applying too much weight for the patient 

to walk with.  In an ideal situation, the material choice should be selected based on the 

patient’s needs and abilities.  

There are many patients throughout the world who require the use of prosthetic limbs 

but do not have the funds to purchase a more advanced and comfortable prosthetic limb.  The 

material associated with the prosthetic limb has a direct effect on the cost of the limb and 

choosing a material with a lower cost can make the prosthetic much more affordable for many 

people throughout the world.  Many different types of materials are used for prosthetics, 

ranging from advanced carbon fiber materials to more simple co-polymers which are easily 

manipulated and require less technology to mold.  Therefore, the material selection is one of 

the most important aspects to a prosthetic design.  

Glass Fiber 

 

Glass fiber comes in a variety of different types and has many different applications; 

however, E-glass fiber is the most commonly used fiberglass in commercial industries.  E-glass is 

the Electrical type of fiber glass due to its low electrical conductivity and use as a dielectric.  

Fiberglass is made up of several different types of fibers: continuous fibers, discrete fibers, and 

woven fabric fibers.  These are all layered to form a laminate.  Optimal strength is achieved 

when continuous fibers are aligned, but only in the direction parallel to the fiber axes’ 

alignment.  This process of creating a laminate with fiberglass is used when making prosthetics 

(Shackerlford, 502).     

A low cost prosthetic, developed by Sebastien Dubois, was created using glass fiber.  

Dubois’ prosthetic project is called “Mobility for Each One” and is being implemented all over 

the world through the support of the non-profit organization, Handicap International.  The 

prosthetic is shown below in Figure 10.  Glass fiber was used for the prosthetic because it is rigid 
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and strong enough to transfer the forces associated with walking through the prosthetic to the 

ground, while also retaining its flexibility.  The combination of these properties produce a 

reliable prosthetic limb, which can be produced using a fairly simple process (Dubois, 

Sebastien).   

 

Figure 10: "Mobility for Each One" Fiberglass Prosthetic 
The process to create this particular prosthetic limb follows several uncomplicated and 

easy to implement steps.  First, the glass fiber is put into a wooden mold and shaped by hand.  

It is then put into a plastic bag and the air is removed, similar to a vacuum.  Once the air has 

been taken out, the material is left to cure.  Due to this simple process, the prosthetic can be 

built easily and fairly inexpensively. Using the material of glass fiber is less expensive than other 

materials used for prosthetics while also being easy to transform into a prosthetic limb (Dubois, 

Sebastien). 

  

Thermoplastics 

 

Thermoplastics, which are commonly used in household products such as packaging, 

toys and cars, have now been applied to prosthetics (Pritham, Charles).  Due to their wide use 

in everyday products, these materials are widely available and produced fairly cheaply.  

Thermoplastics are often created in sheets, which are particularly useful for the purpose of 

prosthetics because they are easy to mold and they have sound structural components to work 

with.  The sheets have versatility in the fact that they can be created in different thicknesses 

and lengths to account for a persons’ physical requirements.   
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The molding of thermoplastics requires little technology and supplies, which makes it 

easier to implement in developing countries.  Also, their structural components are sound for 

use with prosthetics, including strength, flexibility, and adjustable comfort. The most applicable 

quality for use in low cost prosthetics is their ability to be reshaped after their initial 

production.  Thermoplastics can be deformed at temperatures of around 100 °C.  In 

comparison, metals deform around 1,000 °C, which would be much too high of a temperature 

to realistically achieve. The ability to remold is important because if a patient is uncomfortable 

in their prosthetic, expensive liners cannot be used to increase the comfort level and the socket 

will need to be altered.   

A heat gun is used to heat the material to its thermoformable temperature and then 

reformed as necessary (Uellendahl 1998).  At the thermoformable temperature, the material 

becomes soft and easy to deform because the cells become thermally activated and the 

molecules slide past one another.   As the material cools, the ductility is reduced and the 

material becomes rigid again and the new shape holds (Shackerlford, 476).   

These materials are being used in many areas where metal alloys had been used due to their 

comparable strength, ease of fabrication, and reduced cost.  These properties make them an 

ideal material for use with prosthetics for developing countries (Shackerlford, 477).  The two 

most prominent thermoplastics are polypropylene (PP) and polyethylene (PE).   

Polypropylene 

 

Polypropylene (PP) is a thermoplastic material which is made for many different 

products, ranging from appliance housings to prosthetic limbs.  It is used in combination with 

polyethylene (PE) quite often because of its low impact resistance, causing the material to be 

brittle. When combined with PE, its impact resistance increases, and the material becomes less 

brittle. Polypropylene can be made in various different grades, making its material properties 

fall within a broad range of values, as seen in the table below, Table 1 (MatWeb).      

PP is a rigid thermoplastic which is used as the supporting structure within prosthetic designs.  

Stiffer materials are used as support to ensure that the forces applied with walking are 

transmitted to the floor from the amputee.  These forces are crucial to the gait of the patient 
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and need to be addressed carefully by providing a material which transfers the forces through 

the prosthetic to the ground (Uellendahl 1998).      

Table 1: Polypropylene Material Properties 

 

 

 

Polyethylene  

Polyethylene (PE) is another thermoplastic material used for low cost prosthetics.  

Polyethylene is a material which consists of chains of ethylene and is used most often for 

automotive parts, plumbing parts, and containers.  Polyethylene is considered the ‘general use 

polymer’ as it is the most commonly used thermoplastic.  There are several different types of 

polyethylene, including Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), 

and Ultra-High Molecular-Weight Polyethylene (UHMWPE).  High Density Polyethylene (HDPE) 

is the variety of polyethylene that is most commonly used for prosthetics because it has a 

higher tensile strength than lower density (History of Plastics, 2007).   A table of the material 

properties of HDPE has been included below in Table 2.  

Polyethylene has been used specifically in the Jaipur Project for the contact socket and 

shank of their lower limb prostheses.  Sheets of HDPE are thermoformed around the mold of 

the individual requiring the prosthetic limb’s socket, creating a pocket for the patient’s limb to 

attach the prosthetic.  Similarly, this material is thermoformed into the necessary shape of the 

leg, which acts as the shank for this limb (Kulshreshtha, Tarun Kumar).   

PE is used to create the socket, mainly because PE is a flexible material, which makes it 

more comfortable and more appropriate to be used as the prosthetic interface.  The flexible 

material is well suited for the interface because the flexibility brings a greater level of comfort 

to the patient.  Often, these two polymers are blended together to combine the rigid properties 

Property Value Range Average Value 

Poisson’s Ratio 0.1 - 0.3 0.2 

Elastic Modulus 1.16 - 1200 ksi 600.6 ksi 

Density 0.032 – 0.052 lb/in3 0.931lb/in3 

Tensile Yield Strength 1740 – 53,500 psi 27,620 psi 

Compressive Yield Strength 5000 – 8000 psi 6500 psi 

Ultimate Tensile Strength  1310 – 11600 psi 6455 psi 

Coefficient of Friction 0.25 0.25 
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of PP and the flexibility of PE, which merges together two properties necessary for a quality 

prosthetic limb (Uellendahl 1998). 

Table 2: Polyethylene Material Properties (MatWeb) 

Polypropylene – Polyethylene (90/10) 

 

The polypropylene - polyethylene co-polymer has a composition of 90 – 95 % 

polypropylene and 5 - 10% polyethylene.  The combination of these two materials causes the 

material to be both rigid and flexible, which corresponds to a comfortable and functional lower 

limb prosthetic.  The material properties for the specific material used are included below in 

Table 3.  CIR is utilizing the combination of these thermoplastics because they are an easy to 

remold, and simple to fabricate low cost co-polymer.  In turn, they are applying this material in 

their prosthetic campaign all over the world (CIR, 2007).  

Table 3: Material Properties for Polypropylene-Polyethylene (90/10) 

Property Value 

Poisson’s Ratio 0.3 

Young’s Modulus 217,560 psi 

Density 0.03 lbm/in3 

Tensile Yield Strength 4,456 psi 

Compressive Yield Strength 7,034 psi 

Tensile Ultimate Strength  5,337 psi 

 

Other Low Cost Materials 

 

In higher technological prosthetics, materials which have “energy storing” properties 

have been used because their material properties allow for the storing and releasing of energy 

while a person walks. This allows for a more natural gait, especially when compared to a stiffer 

and more rigid shank monolimb.  However, there are several low cost alternatives to the 

Property Value Range Average Value 

Poisson’s Ratio .29 .29 

Elastic Modulus 95 - 195 ksi 145 ksi 

Density .0333 –.0383  lb/in3 .036 lb/in3 

Tensile Yield Strength 2600 – 4700 psi 3650 psi 

Tensile Impact Strength 123 – 250 ft-lb/in2 187  ft-lb/in2 

Tensile Ultimate Strength  3100 – 4390 psi 3745 psi 
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“energy storing” advanced materials, which are being utilized for the purpose of making 

artificial limbs in a more cost effective manner. 

One of the materials used is Vinyl Ester Sheet Molding Compound (SMC).  Vinyl Ester is a 

resin which is usually used in place of polyester or epoxy materials and the material properties 

for Vinyl Ester SMC have been included in Table 4.  One of its most prominent features is its 

corrosion resistance and ability to withstand water absorption.  These are important properties 

for a prosthetic which will be used during all types of weather and physical conditions.  The 

material properties below are included to demonstrate its material properties.  Some 

prosthetic designs are fabricated using several layers of vinyl ester resin containing fibers for 

structure.  This orientation of the material allows for a rigid limb, which also allows for 

flexibility. (Houser, Patent #: 5571207).    

Table 4: Vinyl Ester Material Properties (MatWeb) 

 

 

 

 

 

Occasionally, certain metals are utilized for this purpose such as steel and titanium, 

which are used in advanced prosthetics due to their increased strength and light weight 

respectively. However, due to the low cost focus of these prosthetics, expensive metals are 

usually not utilized.  Therefore, instead of the more expensive, heavier materials, aluminum is 

often used due to its fairly high strength, light weight, low cost, and availability (Bartkus 1993).  

Comparison  

 

 The chart below, Table 5, has been compiled to compare the material properties at a 

glance.  The property values are spread across a wide range because the properties can change 

due to different treating processes and other changes to the material.  Looking at each of the 

properties, a comparison can be drawn about the material properties to justify the use of the 

Polypropylene/Polyethylene Copolymer.  

Property Value Range Average Value 

Elastic Modulus 540 – 3890 ksi 2215 ksi 

Density 0.0372 - 0.0704 lb/in³ 0.0538 lb/in³ 

Compressive Modulus 1,000 – 2,700 ksi 1,850 ksi 

Compressive Yield Strength 15,000 – 45,000 psi 30,000 psi 

Tensile Ultimate Strength  4400 – 120,000 psi 62,200 psi 

http://www.matweb.com/tools/unitconverter.aspx?fromID=87&fromValue=0.0372
http://www.matweb.com/tools/unitconverter.aspx?fromID=87&fromValue=0.0704
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The Ultimate Tensile Strength, the maximum stress that the material can withstand, is 

5,337 psi for the PP/PE Copolymer.  This value is slightly higher than the ranges of the 

polypropylene and polyethylene on their own, demonstrating the advantage to using the 

combination of the two materials.  Vinyl Ester and E-Glass Fiber are both substantially higher, 

but the materials are not able to be remolded as the thermoplastics are, making them less 

desirable for use with monolimb prostheses.  The elongation at break is within the same range 

for all of the materials, except the polyethylene.  The high elongation percentage contributes to 

the high flexibility of polyethylene.   The addition of the polyethylene into the Polypropylene 

adds a level of flexibility to the material properties, which contributes to an increased level of 

comfort in the socket.   

 The deflection temperatures of each material vary as well.  E-Glass Fiber and Vinyl Ester 

have much higher deflection temperatures, making them unable to be remolded once they 

have been fabricated.  The polypropylene copolymer and polyethylene have lower 

temperatures which demonstrate their ability to be manipulated after they have been created.   

Table 5: Properties of Low Cost Prosthetic Materials 
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This property is one of the key factors which set the PP/PE copolymer apart from the 

other materials.  In the field, the prosthetics need to be easily manipulated with lower 

technology tools and processes in order to be effective.  Therefore, lower temperatures can 

successfully be reached to adjust the original socket design in order to provide maximum 

comfort for each of the patients.  

 The modulus of elasticity, essentially the thickness of the material, is the slope of the 

stress-strain curve in the elastic region.  It demonstrates the resistance of the material to 

permanent deformation (Shackelford, 191).  The values for the materials below reveal that the 

thermoplastic materials all have fairly similar values; however, the fiber glass materials have 

much higher elastic modulus values.  This fact demonstrates the increased rigidity of the fiber 

glass materials over the thermoplastic materials.  Rigidity is an important factor, but the 

monolimb approach adds rigidity to the system by design already.  

Finally, the density value for the PP/PE copolymer has the lowest density of any of the 

materials.  This is a very important aspect to the material because lightweight prosthetics are 

much easier to walk with, especially using a rigid monolimb system.  In the end, the 

thermoplastic material used by CIR is a quality material whose material properties are very 

similar to other materials used for prosthetics.  The PP/PE copolymer’s material properties 

demonstrate the ability to act as a high strength, flexibility, and low cost prosthetic for third 

world countries.  
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Objectives 
 

The circular shank is the design currently utilized for the CIR’s outreach programs, and 

several varying parameters of the circular cross sectional shank were tested in order to provide 

CIR with some information regarding the effect of each of the components of their design.   

 The overall objective of this project was to analyze the current shank monolimb, 

designed and utilized by the Center for International Rehabilitation, through a finite element 

analysis.  In order to perform this task, the following objectives were completed:    

1. Data were provided which verified that the current design utilized by CIR can withstand 

the loading conditions specified within the ISO Test Standard 10328 without failure.  

Several combinations of varying diameter and rib thickness parameters were analyzed 

and compared to determine which design would minimize displacement and overall 

stress distributions.  

2.  Four different sized elliptical shaped monolimbs were modeled and used to determine 

the stress distributions throughout the shank. These models underwent an analysis 

within the Finite Element Analysis program, COSMOSWorks, to compare their 

performance and reaction to the loading conditions.   

 A comparison was conducted to evaluate the results of the Finite Element Analyses of both 

the circular and elliptical shanks.  These analyses were used to determine which shapes and 

parameters provide the most structural integrity for the patient.  The shape that was found to 

minimize displacements and stress distributions throughout the monolimb was recommended 

to CIR as the most appropriate design for their programs. These objectives were accomplished 

through the following steps:  

1. Twelve circular shank models of varying shank diameter and rib length and four elliptical 

models with varying minor and major diameters were modeled using the computer 

program, SolidWorks.  
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2. All sixteen models were input into the Finite Element Analysis program, COSMOSWorks 

and static loading tests were performed on each.  These tests complied with the ISO 

Test Standard 10328.  

3. An analysis of the von Mises stress distributions within the monolimb was performed on 

each of the models.  

4. The displacement was analyzed on various areas of the model and graphed for further 

investigation.  These results were utilized to further determine which monolimb shape 

is most appropriate for use in the field.   
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Methodology 
 

 To accomplish the objectives of this study, Finite Element Analysis was performed on 

models of several different shapes.  The first task in this project was a parameter study which 

was performed by changing the outer diameter and rib length of a hollow, cylindrical shank 

model.  Next, elliptical shapes were investigated in a similar fashion, using  several different 

widths and an aspect ratio which was applied to each.  The stress distributions and 

displacement were calculated through the finite element analysis program, COSMOSWorks.  

This chapter will detail the procedure that was followed in order to obtain results that were 

further analyzed and compared to complete the study.  

Parameter Study of the Circular Cross Section 
 

 To better understand the effect of some of the parameters present in the circular 

model, several models were tested with varying combinations of different parameters.   The 

parameters that were tested are the length of the rib on the posterior side of the shank and the 

outer diameter of the shank.  The approach to this portion of the study was to test a model 

with each of the varying parameters to determine what combination of the varying parameters 

decreased the overall von Mises stresses and had some displacement throughout the shank 

which could mimic natural ankle motion; this was done to provide CIR with information 

regarding which monolimb was least apt to fail.  

Shank Height 

 

In order to fully comply with the International Test Standards, the length that was 

chosen to test needed to correspond with the numbers provided by the ISO Test Standard 

10328.  The measurement from the ankle to the knee plane in the standards is 420 mm.  For a 

lower limb amputation, a minimum of 60 millimeters of the tibia must remain in order to retain 

full function of the knee joint (Orthoteers, 2005).  In order to account for lower limb 

amputation, 60 mm has been subtracted from the ISO leg length, making the final length of the 

shank equal to 360 mm.  This shank length was applied to all of the models for all of the 
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subsequent tests in order to test each of the parameters present on the monolimb shank under 

maximized conditions.   

Test Plates 

 

Additionally, a 20 mm test plate has been added to the distal end of the shank in order 

to provide a point of application for the offset load.  During testing, this test plate has been 

bonded to the shank in COSMOSWorks and was included in the overall length. By bonding the 

two parts, the “bonded entities behave as if they were welded…the program merges coincident 

nodes along the interface” (COSMOSWorks Help File).  This plate is 20 mm thick, making the 

final height of the shank to be tested as 380 mm. 

Shank Diameter  

 

Currently, the inner diameter of the shank is determined by the mandrel which is used to 

shape the polypropylene copolymer during the fabrication process.  This size has been applied 

to every monolimb currently produced by CIR.  However, to compare the performance of this 

cross sectional diameter, two other diameter dimensions were also tested.  The diameters that 

have been chosen for testing are 48.5mm, 53.5mm, 58.5 mm, and 63.5mm.  These diameters 

have been chosen to sample varying possible dimensions and demonstrate their respective 

stress distributions.   

The first diameter chosen was 53.5mm because it corresponds to the diameter that is 

currently utilized by CIR for their monolimb design.  When CIR fabricates the monolimb, they 

use a mandrel to size the inner diameter making the inner diameter consistent throughout their 

monolimbs; therefore, the outer diameter that corresponds with the 43.5 mm mandrel and the 

5 mm thick material on each side was used.  Next, the 63.5mm diameter was chosen because it 

is the measured width of the raised ankle portion of a SACH foot.  CIR pairs their monolimb 

design with the SACH foot due to the cost effectiveness of the SACH foot.  In order to allow for 

the combination of these two prosthetic systems, the monolimb should not exceed the width of 

the ankle area of the SACH foot.  Once these two values were selected, a diameter that is 5 mm 

less than the current diameter was chosen in order to determine the effect of a slightly smaller 

diameter on the overall stress distribution of the monolimb. Finally, the 58.5 mm diameter was 
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chosen to provide an consistent increase in diameters by 5 mm increments.  Below, Figure 11, 

shows the cross section of the monolimb.   

 

Figure 11: Monolimb Cross Section 

Length of the Rib 

 

The rib is a feature of the CIR monolimb design which has been added to increase the 

rigidity as well as to seal the posterior edge of the monolimb.  In order to further understand its 

role within the design, several lengths of the rib were tested to demonstrate how the rib length 

affected the overall stress distribution and displacements.  To provide a model for comparison, 

the first length to be tested was 0 mm.  This provided insight as to how the monolimb shank 

reacted to the applied loads without the addition of the rib.  

The next lengths were chosen after measuring the rib length of several of the produced 

monolimbs.  These measurements ranged from 10 mm to 20 mm.  In order to account for these 

varying lengths, both 10 mm and 20 mm rib lengths have been incorporated into the parameter 

study of the monolimb.  

Thickness of Material 

 

The material used to fabricate the monolimbs is a polypropylene copolymer, which is 

purchased in sheets.  The fabrication manual dictates that the sheet purchased is 61 

centimeters wide by 122 centimeters long and has a thickness of 5 mm.  The material 

purchased by CIR for these programs depends on what is available within their cost bracket; 

however, they have been consistently using the 5 mm sheets and have included this dimension 
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in their fabrication manual.  Therefore, a 5mm thickness is a constant parameter throughout 

the modeling and testing.   

Parameter Combinations 

 

 The parameters chosen above were combined into a table to make sure that each of the 

diameters and rib lengths were tested with one another. The shank length remained consistent 

throughout the tests, while the diameter and rib length vary in accordance with the chart 

below, Table 6.  Each parameter was tested with each of the other parameters; therefore twelve 

circular models and cross sections were tested overall.  A table of each of the parameter 

combinations has been included in the Appendix. A table detailing the parameters that were 

tested in combination with one another in different models has been included below:  

Table 6: Circular Test Parameters 
Shank Length Diameter (mm) Rib Length (mm) 

360 mm 

(380 mm,  including plate) 

48.5 0 

53.5 10 

58.5 20 

63.5 

 

Elliptical Cross Section 

 

 The elliptical shape of the monolimb design has been previously researched, physically 

tested, and published in the Journal of Rehabilitation Research and Development (Lee JRRD 

2004).  The CIR does not currently use this shape in the field, but they would like to gain a 

greater understanding of how the stresses are distributed and whether it fails under the loading 

conditions dictated by the ISO Test Standard 10328.   Also, CIR would like to investigate how the 

circular and elliptical shapes compare to one another regarding the stress distributions and 

displacements throughout the monolimb.   

There are four different models that were designed for the elliptical cross sectional 

analysis.  The dimensions are maximized in accordance with the SACH foot that is usually 
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attached to a CIR monolimb.  The interface plane between the SACH foot and the monolimb has 

a width of 63.5mm and a length of 98.42mm.  The ratio of the major and minor diameters of 

the SACH foot was used to find an aspect ratio.  The minor diameters used for these models 

corresponded to the circular diameters and the aspect ratio was applied to these values in 

order to determine the proper major diameter.  The aspect ratio used was 0.645.  These values 

all measure the outer dimensions and are included in Table 7 below.  Further, Figure 12, displays 

a drawing of the maximized elliptical shape. 

Table 7: Elliptical Parameters 

Shank Length Ellipse Width (mm) Ellipse Length (mm) 

360 mm 

(380 mm,  including plate) 

48.5 74.17 

53.5 82.92 

58.5 90.67 

63.5 98.42 

 
Figure 12: Drawing of Elliptical Shape 

ISO Standard 
 

The International Test Standard, ISO 10328, has been used as the basis for the testing.  

This standard details the testing procedure for lower limb prosthetic devices.  The standard 

dictates the proper coordinate system to use while testing, as well as the required forces and 

loading locations.  The purpose of these standards is to ensure that all prosthetic devices are 

properly tested and will perform to a certain level of excellence before being distributed to 

patients; therefore, our coordinate system, forces, and force locations have all been derived 

from the specified values in the standards.    
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Testing Level 

 

 In the ISO Test Standard 10328, there are four testing levels which can be applied to the 

test setup and procedure of adult lower limb prostheses.  These levels are P3, P4, P5, and P6.  

“Field experience has shown that there is no need for lower limb prostheses which sustains 

loads above the level covered by the test loading level P5” (ISO 10328 7.2.3, note 1).  The 

prostheses produced by CIR are utilized by people of all statures, making it appropriate to test 

for the highest level to account for larger adults who may use the prosthetic device.  Therefore, 

the highest realistic loading condition, P5, was determined to be the appropriate level for the 

testing in this study.  The loading values associated with this level have been applied to the 

models to be tested.  

Type of Testing 

  

The type of testing deemed as most appropriate for this analysis is called the ultimate 

strength test in the ISO Test Standard 10328.  The ultimate strength test is a “static load 

representing a gross single event, which can be sustained by the prosthetic device/structure 

but which could render it thereafter unstable” (ISO 10328 3.2).  This test procedure has been 

extracted from the ISO Test Standard 10328 and detailed throughout this report.  The ultimate 

strength test was used to demonstrate the capabilities of the device under extreme loading 

conditions.  The two loading conditions, heel-strike and toe-off, were both applied in the 

testing.   

These two sets of loads have been incorporated into our tests by running each model 

twice.  In the first test, the load present will be the “heel strike” load which is placed on the 

Shank Loading Plane.  The Shank Loading Plane is located at the base of the shank.  This has 

been called Loading Condition I throughout the body of this report.  The next test will be run on 

the model with the “toe off” loading condition, referred to as Loading Condition II.  The location 

point for this load is also on the Shank Loading Plane.  Together, these two loading conditions 

will provide a complete picture of how the monolimb performs under the conditions in each of 

these phases of the gait cycle.  
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Coordinate System  
 

 The ISO Test Standard 10328 specifies the coordinate system that should be used for 

testing; it shows the directions of the axes for testing prostheses and has been included below 

as Figure 13.  It is important to note that this system only applies when the device is configured 

to the upright position. 

 

 

 

 

 

 

 

The coordinate system used by the ISO Standards correlates with a standard three-dimensional 

axes system.  For the purpose of transferring this given coordinate system into one that applies 

to the three dimensional models that will be used, the o-u-f coordinate system has been 

translated into the x-y-z coordinate system. From the origin, o corresponds to the positive x-

axis, while u is the positive y-axis, and f is the positive z-axis.  The o-u-f coordinate system will 

be used throughout the report regarding the orientation of force loads, force locations, and 

points for investigation on the monolimb.    

 The o-u-f coordinate system was found in section 6.7 in the ISO Test Standard 10328, 

which dictates the process for locating the effective joint centers for the knee and ankle joints.  

In order to calculate the location of the ankle joint center, the SACH foot that is available in the 

Biomechanics lab was examined.  The joint center is located at a point that is equidistant in the 

medio-lateral direction and at one-quarter the length of the foot, measured 60.75mm from the 

heel of the foot.   

The shanks that are being tested in this study were designed to connect to the SACH 

foot at the screw-hole location, which is measured at 56mm from the heel and is equidistant in 

the medio-lateral direction.  The ankle joint center coordinate system was input into the 

Solidworks data, as it is located 4.75mm in the anterior direction from the axis through which 

u 

o 
f 

u  upward 

o  outward 

f  forward 

Figure 13: ISO 10328 Coordinate System 
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the foot is connected.  The location of the applied force as specified through COSMOSWorks is 

measured from this point labeled “Joint Center System.” 

Alignment 

 During fabrication, the alignment of the monolimb is adjusted from the socket to shank 

positioning.  There are reference alignment lines which are used to position the socket on the 

proper position on the shank; this point is called the “socket-to-pylon” contact point.  This cast 

is properly positioned and placed on the mandrel.  The mandrel is then placed on top of the 

aluminum bushing, which has been set on a flat surface.  The material is shaped around the 

mandrel to make the shank portion of the monolimb.  Therefore, the axis of the shank is 

aligned with the center of the aluminum bushing.   

Reference Planes 

 

There are three reference planes that are used in the modeling of the monolimb.  These 

planes lie parallel to each other and perpendicular to the u -axis.  In the ISO Test Standard 

10328, the three planes used to determine the force loading location are the Knee Plane (uK), 

Ankle Plane (uA), and the plane which can be applied at any height (uX).  The ux plane has been 

placed at the distal end of the shank.  In this study, this plane (uX) is referred to as the “Shank 

Loading Plane” as it is where the load is applied.   

Figure 14, from ISO Test Standard 10328, visually depicts the reference planes for the left leg 

which will be used during testing.  The reference planes are described in the standards as 

follows:  

1: Top Reference Plane, T 

2: Knee Reference Plane, K 

3: Plane at Any Height, U=Ux 

4: Ankle Reference Plane, A 

5: Bottom Reference Plane, B 
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Figure 14: ISO 10328 Reference Planes (ISO 10328) 

The ISO Test Standard 10328 provides the line of action along which the load is applied 

at the levels of the Knee Plane, Ankle Plane, and the Bottom Plane on the monolimb.  These 

values, which are included in Table 8 below, provide the necessary values to solve for the 

loading point in the f and o directions.  To remain consistent throughout the models, the base 

plane is described at the Shank Loading Plane with uX=0, with the Ankle Plane at uA=20, and the 

Bottom Plane at uB=-60 on the model.  The values provided in the ISO Test Standard 10328 

detail the intersection points of the line of action with the Ankle Plane and the Bottom Plane.  

These values were manipulated to determine the intersection of the line of action with the 

Shank Loading Plane. 

The Shank Loading Plane has been chosen to lie at 0mm in the u direction for all of the 

models.  This height was chosen because this study is only examining the effect of the loading 

conditions on the shank portion of the monolimb; the socket portion of the monolimb is not 

being examined.  The Shank Loading Plane is the location of the applied loads and it lies on the 

bottom of the plate.  The Shank Plane, ux, is the value of the height of the shank plus the 

thickness of the 20mm test plate.  With addition of the test plate, the total height of each 

model is 380 mm.  Using the standards, the values for the coordinates of the inner section of 

the line of action with the bottom and ankle planes in the f and o directions were utilized to 

determine the intersection of the line of action with the loading plane.  The points of 
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intersection of the line of action on the Ankle and Bottom Planes are different for each of the 

two loading conditions, and the respective coordinates have been included in Table 8.   

 
Table 8: Loading Offset Locations  

Loading Condition I   Loading Condition II 

Variables 
Values 
(mm)  Variables 

Values 
(mm) 

fB -48  fB 129 

fA -32  fA 120 

oB 45  oB -19 

oA 30  oA -22 

uB -60  uB -60 

uA 20   uA 20 

 

These values were then input into the equations shown below to find the location for the load 

in these directions on the Bottom Loading Plane.  The location of the loading point in the f-

direction at height u=ux is:  

 
The location of the loading point in the o-direction at height u=ux is: 

 

After the coordinates were input into these equations, the values for fX and oX were obtained.  

A table detailing the values of these loading locations for each condition, I and II, has been 

included below as Table 9.  

Table 9: Loading Condition Load Locations 

Loading Condition I 
 

Loading Condition II 

Variables Values (mm)  Variables Values (mm) 

oX 33.75  oX -21.25 

uX 0.00  uX 0.00 

fX -36.00  fX 122.25 
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Forces 

 

The next step in determining the loads required for the P5 testing level in the ISO Test 

Standard 10328 was to calculate the force components in each of the principal directions: o, u, 

and f. The plane locations specified above were utilized to find the line of action of the force 

vector and then solve for the components of the force vector, the angles of this vector, and 

finally the magnitude of each component.  

The first step in this process was to find the line of action of the force vector. This was 

done by subtracting the coordinates in the three principal directions of the Bottom Plane, from 

the point on the Shank Loading Plane.  For Loading Condition I, the following vector 

components were obtained and displayed below.  

 

 

 

The process was also followed for Loading Condition II with the specified coordinates used for 

each vector equation.  The vector components for Loading Condition II have been displayed 

below.  

 

 

 

The equations for each of these vectors for Loading Condition I, , and Loading Condition II,  , 

are shown below in vector form.  

 

 

Once these vector equations had been calculated, the distance formula was used to find the 

magnitude of this three dimensional vector.  The equation used was:  
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Once the vector equations were found, the Direction Cosines of Vectors principle was 

applied in order to find the components of the load vector.  The equations are displayed in a 

table below, Table 5. These were used to determine the cosine of the angles between the o, u, 

and f planes.  The inverse cosine of each of the values has been included in Table 10.  

Table 10: Cosine Values 

Loading 

Condition 

Equation Cosine 

Value 

Equation Cosine 

Value 

Equation Cosine 

Value 

I 
 

-0.18 

 

0.96 
 

0.19 

II 

 

-0.04 

 

0.99 

 

-0.11 

 The ISO Test Standard 10328 specifies that the value of the applied force for Loading 

Condition I is 3360 N and for Loading Condition II is 3019 N.  These force load values were 

multiplied by their respective cosine values in the alpha, beta, and gamma directions.  The 

product of each provided the force components in the three directions.  These component 

values are detailed in the table below, Table 11.  

Table 11: Force Components 
Force Component Table Loading Condition I Loading Condition II 

o-component -607.58 N -112.42 N 

u-component 3240.44 N 2997.99 N 

f-component 648.09 N 337.27 N 

 The values have been used as the components of the force vector to be applied on the 

Shank Loading Plane for each of the tests for the varying elliptical dimensions and circular 

parameters.   

Shank Models 
 

 The first step in determining how the monolimb responds to the testing loads was to 

create the models.  These models were created with the three-dimensional modeling program, 

Solidworks.  The models were built using the coordinate system dictated by the standards and 

described previously.  The models will each have one of the circular or elliptical parameter 
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combinations detailed in Appendix D.  These size differences have been applied to better 

understand the affect of the cross sectional shape on the monolimbs’ stress distributions and 

displacements.  

Once the models had been made, a plate was added to the distal end of the shank.  This 

plate has been added to the model to ensure proper distribution of the applied force.  In 

physical testing, the socket portion of the monolimb and attached prosthetic foot would serve 

the purpose of distributing the load.  In this study, the socket and foot have not been included 

and the line of action of the force lies outside of the area of the shank, which makes a plate 

necessary to distribute the force across the bottom of the shank. The force loads dictated by 

the ISO Test Standard 10328 are point loads, which need to be distributed to the model to 

better represent the natural forces which would be experienced during the gait cycle.  Beyond 

distributing the load, the plates need to be able to withstand the load with minimal 

deformation in their geometry.  To determine the material to be used for these purposes, 

material properties were consulted to find a material with a high yield strength, because the 

this property demonstrates the stiffness of the material.  A material with a high yield strength 

has a lower chance of permanent deformation.  This material property was necessary for the 

test plate to ensure that the load was distributed through the shank, rather than deforming the 

plate.  AISI 1020 steel proved to be the best choice for the plate. AISI 1020 steel has the highest 

yield strength of all the materials within the COSMOSWorks Material Library, making it the 

most stiff and best for loading in this test.      

Force Application  

 

Upon completion of the construction, the models were opened in COSMOSWorks to 

begin the Finite Element Analysis testing.  The Ultimate Static Test Forces were applied 

according to the ISO Test Standard 10328.  To account for the two main stages of the gait cycle, 

the ‘heel strike’ and ‘toe off’ phases were both applied on the Shank Loading Plane, which lies 

on the test plate located at the base of the shank.  At the height of the shank, a fixed constraint 

has been applied to ensure that there is no movement from this end of the shank while testing 

is being completed.   
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Finite Element Analysis Testing 

 

For the purposes of the FEA software, the model will be assumed as linearly elastic, 

isotropic, and homogeneous.  The values in the table below will be applied as the material 

properties for the model created and run in COSMOSWorks.  The values being applied to the 

model are listed in Table 12. 

Table 12: Polypropylene/Polyethylene Copolymer Material Properties 
Material Property Value (English Units) Value (SI Units) 

Poisson’s Ratio 0.3 0.3 

Young’s Modulus 217,560 psi 1.5 X 109 N/m2 

Density 0.03 lb/in3 830.4 kg/m3 

Tensile Yield Strength 4,456 psi 3.07 X 107 N/m2 

Compressive Yield Strength 7,034 psi 4.85 X 107 N/m2 

Tensile Ultimate Strength  5,337 psi 3.68 X 107 N/m2 

 

A new study was performed for every combination of the parameters; a table detailing 

the parameters of each circular has been included as Appendix A.  Each study created a solid 

mesh in order to perform a static analysis on the models that have been designed to the 

specifications described above. Once the study was defined, the proper constraints and point 

loads were applied.  For the first study, the forces as described for Loading Condition I were 

applied to the Shank Loading Plane while a fixed constraint was applied at the proximal end of 

the shank.  The components of the “heel strike” loading conditions were applied in the 

specified location.  This point load is applied to the plate to distribute the force throughout the 

plate to the shank.  Once all of these conditions were specified within COSMOSWorks, the mesh 

was created on the model, and the load was applied for the analysis to be performed. 

After the mesh was successfully applied to the model and the program had finished 

running the model, the results were extracted to observe the von Mises stresses and 

displacements that occurred due to the applied loads.  The results have been reported in the 

form of several contour plots, which are displayed through colors that correspond to different 

stress and displacement value levels.  The color scale of the contour plots was adjusted to 

ensure that the same values corresponded with the same stress and displacement values 
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throughout all of the models.  This was done to provide consistency throughout the testing and 

analyses of this study.  These plots were then used for the comparative analysis that is 

described later in this report.  

Finite Element Analysis  

Failure Criteria 

Von Mises Stress 

 

 The material used for manufacturing the CIR prostheses is a thermoplastic material.  

This material has a percent elongation of 5%, which places it into the ductile materials category.  

The failure of ductile materials is considered to occur when the yield strength is reached under 

static loading (Norton, 241), which is when the von Mises stresses become equal to the stress 

limit.  The yield strength for this material is 3.07 *107 N/m2, which was also referred to as the 

stress limit. Therefore, the von Mises stresses were used as the first criterion for comparison 

between the shank models.  

 The von Mises stresses were used for this comparison because these stress values 

“allow the most complicated stress situation to be represented by a single quantity” (Shigley, 

J.E., 2004).  In essence, the von Mises stress values are a combination of all of the stress 

components present in the model into one value.  This is a good measure of the overall reaction 

of the shank monolimb to the loading condition, because it takes all of the stress components 

and outputs one stress value.  This value was compared to the Yield Strength to ensure that the 

material did not exceed the stress limit presented by the polypropylene copolymer material.  

The contour plot for the von Mises stresses will be examined for each of the models.  These 

contour plots were used to display the overall distribution of the von Mises stresses throughout 

the material, as well as determine the approximate location and value of the maximum von 

Mises stresses.  These contour plots were examined and presented in the results section of this 

report.  

Within the COSMOSWorks program, the failure analysis that was run was the von Mises 

stress distribution test.  This test is based on the von Mises-Hencky theory, which is “the most 
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accurate” (Norton, 241) of the numerous failure theories for ductile materials.  The Yield 

Strength specified is what the program uses to determine whether or not the model has 

reached its stress limit.  

 

 Another one of the features of the COSMOSWorks program which was used to further 

illustrate the overall von-Mises stresses was the Design Check.  The Design Check isolated the 

shank and illustrates the stress distributions throughout this part of the model, which 

disregarded the metal plate for this portion of the analysis.  As the purpose of the metal plate is 

to distribute the force, the stress distributions present in the metal plate did not need to be 

investigated further in this study. The Design Check has various comparison criteria, but the 

first criterion to be used will involve the von Mises stresses, which are applied in the program 

per the equation below to determine whether or not the model fails at any point within the 

model. 

 

The Design Check applies the Yield Strength as σLimit to highlight the areas where this ratio is 

greater than 1 and displays these regions in red.   

Using the next feature within COSMOSWorks, ISO Clipping, these areas can be isolated 

so that only the areas where the ratio is above 1 are shown in the contour plot of the shank. 

These isolated areas allow a better understanding of where the shank is experiencing von Mises 

stresses that exceed the stress limit.  The tests were performed on all of the models and the 

areas where the ratio is greater than 1 were compared through an observational analysis of the 

location of these areas and the value by which this failure criterion is exceeded.   
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Displacement 

 

The next area for comparison is in the displacement of each model due to the applied 

loading conditions.  The displacements were investigated to determine the overall effect of the 

parameters and their reaction to the loading conditions in the varying directions.  The 

displacements were examined in component form to determine how the model has moved 

from its original position in each of the three principal directions, o, u, and f.  These component 

values were used to find the resultant displacement in each model.  These were graphed and 

analyzed to gain a better understanding of how the combined loading affected the models.  

 The measurements of the displacements were taken at 12 points distributed equidistant 

throughout the shank of each model.  The first point was located 10mm above the interface of 

the shank and the plate, and the u (y) coordinate of the following points was increased by 

30mm.  These points were located on the outer edge of the monolimb, at a point that is 180° 

from the load application point.  For Loading Condition I, measurements were taken along the 

plane that lies 46.86° from the positive f axis, in the negative o direction.  For Loading Condition 

II, this plane lies 9.84° from the positive f axis, in the negative o direction.  These planes were 

chosen as they pass through the point of application of the load vector and the axis of the 

shank for their respective loading conditions. The plane has been displayed in Figure 15 below; 

the green line represents the plane used for measurement of the stress and displacement 

values.  In the figure below, the coordinate system corresponds to the traditional x-y-z system, 

with the x and o direction the same, and the z and f direction the same.   
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Figure 15: Plane for stress and displacement measurements 

These points were probed in the COSMOSWorks program to determine the 

displacements at each of these points.  The data for the X and Z displacements at each point 

were transformed to correspond to the plane on which we had previously measured the von 

Mises stresses.  The given data from COSMOSWorks was exported into Excel and the resultant 

displacement was transformed into components to correspond to the new plane.  The scalar 

resultant value was found using the formula  .  The direction of the resultant was 

found as .  The angles described in the earlier section, 46.86° and 9.84° 

(symbolized by ), were used to find the values of the “In-Plane” and “Out-of-Plane” 

displacement.  The “In-Plane” value describes the value that lies within the plane described 

above, and was found using: .  The “Out-of-Plane” displacement, which 

describes the values that are 90° to the plane, were found using a similar equation: 

.  The “In-Plane” displacements are related to the bending loads, while the 
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“Out-of-Plane” displacements are related to the torsional loads and the transverse bending 

loads. 

The displacements at each of these probed points were output into multiple graphs to 

better understand the displacement throughout the model.  The values of the resultant 

displacement in each model were graphed according to outer diameter.  Graphs were also 

created to depict the “In-Plane” and “Out-of-Plane” displacements.   

The output from COSMOSWorks was manipulated in Excel to achieve the appropriate 

graphs to scale.  The COSMOSWorks values do not correspond to the values originally described 

for the probed points (10mm, 40mm, 70mm, etc.) because they are based on a coordinate 

system that is located near the centroid of the model.  In order to account for this change, the 

difference was found between the y value in the probed point, and the original y value of the 

point.  This difference was added to each of the points to keep the u-values in the same relative 

position as they were in the exported data.  For example, in the figure below, the point at the 

distal end of the shank has a y-value of -163mm.  In order to have the appropriately scaled 

data, 173mm will be added to every u-value of each node.               
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                                  Figure 16: Front View of Probed Points                           Figure 17: Scale of Displacement Values 
 Figure 16 and Figure 17, shown above display the values of the resultant displacement 

at each of the probed points.  The above example is from the 53.5 Outer Diameter model with a 

10 mm rib length under Loading Condition I and the points are clearly located on the plane that 

lies 46.86° from the f-axis.  The displacement was investigated because flexibility in the shank 

can mimic that of natural ankle motion, which is a desirable quality in a prosthetic.  It 

demonstrated how the shank responds to the loading, and which set of parameters provided 

sufficient rigidity for the patient. For this reason, the analysis of the displacements was of 

particular interest for this report.   
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Figure 18: Graph of Resultant Displacement 
 Figure 18 displays the graph of the displacement in the shank model.  The 10 mm u 

distance on the graph corresponds to the area present 10 mm above the interface between the 

shank and the metal plate; this area of the monolimb corresponds to the ankle region of the 

model.  The 340 mm points correspond to the height of the shank where there is a fixed 

constraint on each of the models.  

 Within the monolimb, the displacement throughout the shank is often considered a 

positive quality of the design, because this displacement will mimic ankle movement for the 

patient (Lee 2006).  Therefore, we will pay special attention to the displacement throughout the 

monolimb to determine if the shank is undergoing slight displacements around the ankle and 

up through the height of the shank.  The displacement is expected to be larger toward the distal 

end of the shank as it is closer to the loading; however, the displacements throughout the 

entire shank will be examined.    
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Results 

Von Mises Stresses 
The von Mises stresses were analyzed through the contour plots which were displayed 

from the results of the finite element analysis performed in COSMOSWorks.  These models 

have been included showing the Front View from COSMOSWorks for each of the models.  The 

Front View was chosen as the most appropriate view to display because the maximum stresses 

and probed points were clearly visible with this view in the computer program.  The point which 

was probed on each of the models lies 180 degrees from the load application point.  This plane 

lies 46.86° and 9.84° from the f-axis in the negative o-direction, which according to manual 

calculations, should be the plane upon which the highest von Mises stresses are located for 

loading condition I and II, respectively.  To provide better comparisons between the data for 

each diameter, one color scale for the von Mises stress contour plots has been used per 

diameter per loading condition.   

Loading Condition I 

The contour plots in this section will display the von Mises stresses caused by Loading 

Condition I, which is the “Heel Strike” load from the ISO Test Standard 10328. 

Circular Shanks 

Circular Shank: 48.5 mm Outer Diameter 

 The von Mises stresses are displayed through the contour plots below in Figure 19, these 

plots are for the 48.5 mm OD shank.  From left to right, the models are for the 0 mm rib, 10 mm 

rib, 20 mm rib, and finally the color scale for the model.  As shown in these stress plots, there 

are definite areas where maximum von Mises stresses are occurring on the anterior region of 

the shank.  These areas can be visually seen below as red regions on the shank; the maximum 

von Mises stresses are displayed through the color red in the contour plots.  The von Mises 

stresses are 100% higher in the model with a 0 mm rib length than the Yield Strength for the 

thermoplastic material being used for the monolimb.  The stresses in each of these models are 
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above the Yield Strength, with the 20 mm rib length being 38% higher than specified 3.07*107 

N/m2 value.  

 
 
 

Figure 19: 48.5 mm OD von Mises Stress Contour Plots (Loading Condition I) 

The below table, Table 13, displays the probed von Mises stress values for all of the 

circular models under loading condition I.  The overall stress distributions for each of the 

circular shanks follow a similar pattern as shown in the models above; therefore, the remainder 

of the contour plots has not been included in the body of the report, but they are included in 

Appendix G for further reference.   

Table 13: von Mises Stress Values for circular models (Loading Condition I) 

Outer Diameter  0mm Rib Length 10mm Rib Length 20mm Rib Length 

48.5 mm 6.125*107 N/m2 4.682*107 N/m2 4.221*107 N/m2 

53.5 mm 3.666*107 N/m2 3.200*107 N/m2 2.889*107 N/m2 

58.5 mm 3.215*107 N/m2 2.212*107 N/m2 2.062*107 N/m2 

63.5 mm 1.962*107 N/m2 1.843*107 N/m2 1.759*107 N/m2 

Yield Strength  3.07*107 N/m2 

48.5 mm OD 10 mm rib 48.5 mm OD 20 mm rib 48.5 mm OD 0 mm rib 
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Elliptical Shanks 

                 
 

         
 
 

63.5mm minor diameter 

58.5mm minor diameter 53.5mm minor diameter 

diameter 

48.5mm minor diameter 



 

 

54 
 

Figure 20: von Mises Stress Contour Plots for Elliptical Shanks (Loading Condition I) 

As shown above in  

 

Figure 20, the von Mises contour plots have been included to illustrate the stress 

distributions present throughout the elliptical shanks.  The pattern of stresses mimics that of 

the circular shanks for Loading Condition I, with a stress concentration located on the front area 

of the shank and the stresses decreasing as the distance from this area increases.  A chart of the 

values for the elliptical shanks at the probed point that lies 25 mm below the proximal end has 

been included below as, Table 14. 

Table 14: von Mises Stress Values for Elliptical Shanks (Loading Condition I) 

Elliptical Minor 

Diameter 
48.5 mm 53.5 mm 58.5 mm 63.5 mm 

Von Mises  

Stress Value 
2.838*107 N/m2 1.938*107 N/m2 1.491*107 N/m2 1.211*107 N/m2 

 These values detailed above all below the Yield Strength of 3.07*107 N/m2, which 

demonstrates that the elliptical models all successfully pass the von Mises failure criteria.  

 
Loading Condition II 

 The next sets of contour plots will display the von Mises stresses caused by Loading 

Condition II, which is the “Toe Off” load from the ISO Test Standard 10328.  

Circular Shanks 

Circular Shank: 48.5 mm Outer Diameter 

The below contour plots display the von Mises stresses that were caused by Loading 

Condition II on the 48.5 mm OD shank.  These contour plots have been included as Figure 21.  

The model with a 0 mm rib has an area where maximum stresses occur, which can be seen as 

the red portion of the shank in the leftmost model below.  This area is not visually present in 

the other two models with rib lengths of 10 mm and 20 mm. The 10 mm rib shank has an area 

of yellow, which is still fairly high on the color spectrum, but there is not a maximum stress 

displayed in this area.  In the model with a 20 mm rib length, the front area of the shank is 

primarily green and blue, demonstrating much lower stress values.  
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Figure 21: 48.5 mm OD von Mises Stress Contour Plots (Loading Condition II) 

 

Table 15: 48.5 mm OD von Mises Stress Values (Loading Condition II) 

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 

II (Toe Off) 1.065*108 N/m2 6.955*107 N/m2 4.886*107 N/m2 

Yield Strength 3.07*107 N/m2 

 As shown in the table above,  

Table 15, the stresses decrease by 35% with the addition of the 10 mm rib; however, all of the 

von Mises stresses in the 48.5 mm models are at least 59% higher than the Yield Strength of the 

thermoplastic material.  

 The table containing all of the von Mises stress values for the circular models under 

loading condition II is below, 

48.5 mm OD 20 mm rib 48.5 mm OD 10 mm rib 48.5 mm OD 0 mm rib 
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Table 16. 
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Table 16: Probed von Mises values for elliptical shanks (Loading Condition II) 

Outer Diameter  0mm Rib Length 10mm Rib Length 20mm Rib Length 

48.5 mm 1.065*108 N/m2 6.955*107 N/m2 4.886*107 N/m2 

53.5 mm 6.842*107 N/m2 4.867*107 N/m2 3.592*107 N/m2 

58.5 mm 6.847*107 N/m2 3.609*107 N/m2 2.830*107 N/m2 

63.5 mm 3.460*107 N/m2 2.802*107 N/m2 2.326*107 N/m2 

Yield Strength  3.07*107 N/m2 

The remaining contour plots and observations for each of the models have been 

included in Appendix G. 
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Elliptical Shanks 

 

 
 

Figure 22: von Mises Contour Plots for Elliptical Shanks (Loading Condition II) 

48.5mm minor diameter 53.5mm minor diameter 58.5mm minor diameter 

63.5mm minor diameter 
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 The value of the von Mises stresses for the 48.5 mm width elliptical shank is more than 

double the Yield Strength, and also nearly three times the stress value for the 53.5 mm width 

shank.  This can been seen through the chart, included as Table 17. The stresses decrease as the 

minor diameter of the ellipse increases.  Each of the values lies below the Yield Strength for the 

thermoplastic material, as long as the minor diameter is greater than or equal to 53.5 mm. 

Table 17: von Mises Stress Values for Elliptical Shanks (Loading Condition II) 

Elliptical Minor 

Diameter 
48.5 mm 53.5 mm 58.5 mm 63.5 mm 

Von Mises  

Stress Value 
6.955*107 N/m2 2.390*107 N/m2 1.667*107 N/m2 1.526*107 N/m2 
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Displacement 

Loading Condition I 

Circular Shanks 

Circular Shank: 48.5 mm Outer Diameter 

         
 

Figure 23: 48.5 mm OD Displacement Contour Plots (Loading Condition I)  

 Figure 23 shows that the displacements are highest the closer they lie to the load 

location in the u direction.  As the distance from the load location increases, the displacement 

values decrease.  This trend was similar in each of the models tested and the displacement 

plots have been included in Appendix H.  Below, Figure 24 displays this trend graphically.  These 

displacement values output from COSMOSWorks are substantially larger than originally 

expected.  The resultant displacement for a shank of this diameter is nearly twice the 

dimension of the full diameter, 48.5 mm.   

48.5 mm OD 20 mm rib 48.5 mm OD 10 mm rib 48.5 mm OD 0 mm rib 
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Figure 24: Resultant Displacement (48.5 mm OD) 

Circular Shank: 53.5 mm Outer Diameter 

The resultant displacement values on the 53.5 mm OD shank are quite large; the resultant 

displacement is close to 10% of the height of the shank. The overall trend in the above graph 

shows that as the rib length increases, the magnitude of displacement decreases which can be 

seen in Figure 25 above.   

 

Figure 25: Resultant Displacement of 53.5 mm OD 
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Circular Shank: 58.5 mm Outer Diameter  

Through the use of the graph below in Figure 26, the existing trend can be seen, which is 

that as the distance from the load increases, the displacement decreases.  

 

Figure 26: 58.5 mm OD Resultant Displacement (Loading Condition I) 

Circular Shank: 63.5 mm Outer Diameter 

The displacement values decrease as the rib length increases; however, the difference 

between the 10 mm and the 20 mm shank is not substantial enough to make a significant 

difference.  This can be seen through the displacement graph below, Figure 27. 
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Figure 27: Resultant Displacement of 63.5 mm OD 

Elliptical Shanks 

 
 
 

Figure 28: Displacement Plots for Elliptical Shanks (Loading Condition I) 

As shown in the displacement plots above,  

Figure 28, the displacement is greatest at the point where the shank and the metal plate 

meet. Below, Figure 29, displays this data in a graphical format.  The displacement values 

58.5 mm width 63.5 mm width 48.5 mm width 53.5 mm width 
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decrease as the minor diameter of the elliptical shape increases.  The elliptical shank with a 

minor diameter of 63.5 mm has displacement values which are less than 10 mm, which is more 

than three times lower than the displacement values for the 48.5 mm width shank.  

 
Figure 29: Resultant Displacement Graph for Elliptical Shanks (Loading Condition I) 



 

 

65 
 

Loading Condition II 

Circular Shanks 

Circular Shank: 48.5 mm Outer Diameter 

 

         

Figure 30: 48.5 mm OD Displacement Contour Plots (Loading Condition II) 

 In the above contour plots, Figure 30, the displacements of the 48.5 mm OD shank have 

been presented.  In these plots, the blue portion represents the minimum displacement values 

and this area takes up nearly half of the shank.  Again, these contour plots are fairly similar for 

each model and have been moved to Appendix H. 

48.5 mm OD 20 mm rib 48.5 mm OD 10 mm rib 
48.5 mm OD 0 mm rib 
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Figure 31: 48.5 mm OD Resultant Displacement (Loading Condition II) 

Circular Shank: 53.5 mm Outer Diameter 

The displacement for models with 53.5 mm OD has been included through contour plots,  

Figure 57, and graphically as Figure 32.  As depicted in the graph below, the 

displacement is considerably large; the resultant value representing up to nearly double the 

diameter.  The addition of the rib in this case decreases the displacement values by 80% when 

comparing it to the model with no rib.  This demonstrates that the rib length can make a 

substantial difference in decreasing the resultant displacement of the shank.  

It is also important to notice the slope differences between the lines on this graph.  For 

the 0 mm rib shank, the displacement is largest at the ankle, but lowers as the points continue 

up the height of the shank.  The slope of this line is a more drastically negative line than the line 

of the 20 mm rib length model, which fairly remains much more horizontal as it approaches 0 
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mm of displacement at the fixed end. 

 

Figure 32: Resultant Displacement (Loading Condition II, 53.5 mm OD 

Circular Shank: 58.5 mm Outer Diameter 

 In the contour plots above, the displacement for the 58.5 mm OD shank, under loading 

condition II has been included as Figure 58.  The data has been furthered represented through 

the use of the graph below, Figure 33.  Similar to the 53.5 mm OD shank, the 20 mm rib 

decreases the displacement by 75% when compared to the 0 mm rib shank.  This is a 

considerable amount of displacement which is being decreased by the presence of the rib.  
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Figure 33: 58.5 mm OD Resultant Displacement Graph 

Circular Shank: 63.5 mm Outer Diameter 

The above displacement contour plots, Figure 59, were generated through 

COSMOSWorks to detail the displacement caused by Loading Condition II.  This data was 

further investigated through the graph included below, Figure 34.  As shown below, the 

displacement decreases as the rib length increases.  The displacement also decreases as the 

point gets further away from the load application point at u=-20 mm.  The majority of the 

displacement is taking place around the ankle portion of the shank.  
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Figure 34: 63.5 mm OD Resultant Displacement (Loading Condition II) 
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Elliptical Shanks 

 

Figure 35: Displacement Plots for Elliptical Shanks (Loading Condition II) 

For Loading Condition II, the elliptical shank has less red areas of displacement values, 

which signify the maximum stresses as shown in Figure 35.  The displacement values in the 

graph below are fairly consistent with the values found for Loading Condition I demonstrating 

that the elliptical shank reacts to the loading conditions consistently.  Again, the displacements 

decrease as the width of the shank increases.  

63.5 mm width 58.5 mm width 53.5 mm width 48.5 mm width 
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Figure 36: Resultant Displacement for Elliptical Shanks (Loading Condition II) 

Comparisons 
To gain an understanding of the effect of the parameters on the performance of the 

monolimb, several comparison graphs have been generated to provide a visual base from which 

to draw conclusions.  Each graph has a dashed line marking the yield strength of the 

thermoplastic material to be used for comparison of the von Mises stresses.     

Von Mises Stresses 

The first mode for comparison of the von Mises stress is the difference between the 

models’ reaction to the loading conditions.  The first loading condition, heel strike, had much 

lower von Mises stress values than the second loading condition; toe off, for all models.  This 

was primarily due to the off-set load location differences.  In the first loading condition, the 

offset load was 36 mm from the center of the shank in the -f direction; however, the second 

loading condition had an offset load of 122.75 mm in the f direction.  These high stresses are 

most likely occurring because the load location is 122.25 mm offset in the f direction from the 
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origin of the model.  With such a large offset, the bending stresses increase substantially, 

causing higher overall stresses throughout the shank under Loading Condition II.  

As shown in the table below, Table 18, the results from Loading Condition I in the 0 mm 

rib length column are generally about half of the value found for Loading Condition II.  As the 

rib length increases, the stress values between the two different loading conditions are closer in 

value. Through this comparison, it can be concluded that Loading Condition II has much higher 

stress levels overall due to the increased bending loads.  

Table 18: von Mises Stresses at probed point - Comparison by Loading Condition 

Shank 
Diameter (mm) 

Loading 
Condition 

0 mm rib (N/m2) 10 mm rib (N/m2) 20 mm rib (N/m2) 

48.5 I 6.13E+07 4.68E+07 4.22E+07 

II 1.07E+08 6.96E+07 4.89E+07 

53.5 I 3.67E+07 3.20E+07 2.89E+07 

II 6.84E+07 4.87E+07 3.59E+07 

58.5 I 3.22E+07 2.21E+07 2.06E+07 

II 6.85E+07 3.61E+07 2.83E+07 

63.5 I 1.96E+07 1.84E+07 1.76E+07 

II 3.46E+07 2.80E+07 2.33E+07 

 

In the below figure, the stresses are being compared between the various rib lengths 

and cross sectional diameters.   
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Figure 37: von Mises stresses at probed point- Rib Length Comparison (Loading Condition I) 

A similar pattern is seen when investigating the stress value distribution for Loading 

Condition II and has been displayed as Figure 38.  

 

Figure 38: von Mises stresses at probed point- Rib Length Comparison (Loading Condition II) 

--- Yield Strength Value 

20 10 

20 
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--- Yield Strength Value 

10 

20 



 

 

74 
 

In this graph, the 53.5 mm and 58.5 mm shanks with a 0 mm rib length are almost 

identical; there appears to be an anomaly in the data, as it does not follow the expected trend 

of a decrease in stresses as the diameter increases.  This value should be re-evaluated; 

however, time does not permit further investigation of this suspicion. The stress value for the 

48.5 mm shank is 250% higher than the Yield Strength for the Polypropylene Copolymer, which 

is an unacceptable stress value.   The trend remains similar to Loading Condition I in the manner 

that the stress values decrease as the diameter increases and also as the rib length increases.   

This comparison did provide insight regarding the positive effect of the rib on the 

maximum stress values of the shank models.  The addition of the rib to the monolimb design 

contributes to the monolimb design by decreasing the stress levels throughout the model.  

A decrease in von Mises Stress values is an important aspect of the design to consider; 

however, there are other effects of a decrease in these values.  As the stresses decrease, the 

displacement values also decrease which causes the shank to become more rigid.  A more rigid 

design is not optimal because flexibility within the shank mimics natural ankle movement, 

which is a desirable quality in the overall shank design. Also, an increase in diameter or rib 

length requires more material which contributes to an increase in weight for the monolimb.  An 

increase in weight would be a negative attribute to the patient as the monolimb would become 

heavier and harder to walk with.  Although it is important that the von Mises stresses fall below 

the Yield Strength line included on the graphs above, the amount that the stresses lie below 

this value is not as important.  Finding a light, flexible monolimb with von Mises stresses that 

are below the Yield Strength is the underlying goal of this project.  

Elliptical Shanks 

 

As shown in the figure below, Figure 39, the von Mises stresses decrease as the minor 

diameter of the hollow elliptical shank increases.  For loading condition I, the von Mises 

stresses found at the same location on each model are below the Yield Strength, which 

demonstrates the models were all successfully loaded and withstood the applied loads for 

Loading Condition I.  For Loading Condition II, the stress values are almost three times larger 

than the value found for Loading Condition I in the model with a 48.5 mm minor diameter 
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elliptical shank; however, on the other three models, the stress values are roughly equivalent to 

each other.  This observation differs from that of the circular shanks where the stress values for 

Loading Condition II are often almost double the values found for Loading Condition I.  

 

Figure 39: von Mises Stress Values for Elliptical Shanks  

 

Elliptical Shank and Circular Shank Comparison 

In the graph below, the circular shanks and elliptical shanks of the same diameter or 

elliptical minor diameter have been included for comparison between the two shapes.  The 

trend below demonstrates that for each diameter, the shank with a 0 mm rib length has the 

highest von Mises stresses and the elliptical shank has the lowest stress values.  The circular 

shank with a 10 mm rib has lower stress values than the 0 mm rib, but still higher than the 20 

mm rib length and the elliptical shank.  Through analysis of this graph, it can be seen that the 

elliptical shank decreases the stress values present in each shank width/diameter.   
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Figure 40: Circular and Elliptical Shank von Mises Stress Comparison (Loading Condition I) 

  

Performing a similar comparison on Loading Condition II, a very similar trend is seen in 

Figure 41 below.  The stresses in the circular shank with a 0 mm rib length are substantially 

higher than the other models.  In all, but the 48.5 mm diameter/elliptical minor diameter, the 

elliptical shank significantly decreases the von Mises stress values.  This appears to be 

irregularity with this data.  The elliptical shank should follow the same trend as seen in the rest 

of the models by measuring the lowest von Mises stresses of shank models of the same 

diameter.  The elliptical shank decreases the stresses more than the 20 mm rib length does in 

the circular shank, which is an important quality in comparing these models.  

 

 

--- Yield Strength Value 
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Figure 41: Circular and Elliptical Shank von Mises Stress Comparison (Loading Condition II) 

Displacement 

Next, the displacement was analyzed through its components out of plane and in-plane.  

These data were obtained through COSMOSWorks and transformed per the methodology 

described above.  The In-Plane displacement is caused by the bending loads occurring through 

the model and has been shown in several graphs below.   

First, the in-plane displacement trends for Loading Condition I have been included as 

Figure 42.  The data provided in this graph only represent the maximum displacement of the 

points probed along the shank, which lies 10 mm above the interface between the metal plate 

and the shank.  Charts which detail the displacement throughout the entire shank have been 

included in Appendix G. The in-plane displacement has been found in order to further 

--- Yield Strength Value 
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understand the affect of the bending loads on the shank.  Displacements due to the bending 

loads were the primary component of the overall displacement throughout the models, which 

is why the in-plane displacement values are higher than the out-of-plane displacement values, 

which will be discussed in the next few pages.   

 

Figure 42: In-Plane Displacement Trends for Loading Condition I 

 

The model with the most displacement was the 48.5 mm shank with a 0 mm rib.  This 

demonstrates that the smallest diameter, paired with the smallest sized rib do not contribute to 

realistic displacement values.   For each diameter, the models with a 0 mm rib length have the 

highest displacement values when compared to the models with 10 mm and 20 mm shanks.  
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The lowest displacement values were from the 63.5 mm OD shank with a 20 mm rib length and 

the 10 mm rib length.  This demonstrates that an increase in diameter increases the overall 

rigidity of the monolimb.  It can also be seen that as the rib length increases, the displacement 

values decrease because the rib is further adding to the rigidity of the design.  In addition, as 

the diameter increases, the displacement values decrease, which further substantiate the 

conclusion that a larger diameter would contribute to lower stresses as well as displacement 

caused by bending loads.  

 

Figure 43: In-Plane Displacement Trends for Loading Condition II 

The In Plane Displacement proves to be very similar between Loading I and Loading II.  

The trend for displacement follows that the model with a 0 mm rib has the highest 

displacement values while the elliptical model with the same minor diameter has the lowest 
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values; this proves true for loading conditions I and II.  It would be assumed that the monolimbs 

would not see such large displacement values in the field, as they would never be exposed to 

such extreme conditions; however, it should be noted that the loading conditions dictated by 

the ISO Test Standard 10328 and the maximized height parameters allow for substantial 

displacement in the shank region of the monolimb.  

 

Figure 44: Maximum Out-of-Plane Displacement Comparison (Loading Condition I) 
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Figure 45: Maximum Out-of-Plane Displacement (Loading Condition II) 

The Out-of-Plane displacement demonstrates the affect of the transverse loads on the 

shank models.  These values are much lower than those caused by the bending loads in the 

previous few graphs.  It is important to notice that the displacement is positive for the models 

that have a 0 mm rib and negative for those models that have a 10 mm or 20 mm rib length.  

The positive displacement means that the displacement is towards the anterior part of the 

shank while the negative displacement is directed towards the posterior part of the shank.   

In both loading conditions, the 48.5 mm shank has the highest displacement values and 

the 63.5 mm shank has the lowest displacement values. The values increase as the diameter 

decreases and also as the rib length decreases.  These trends again substantiate the claim that 

the rib length contributes positively to the overall design of the monolimb.  An increase in 

diameter would cause a decrease in displacement, but still allow displacement throughout the 

shank, which would still allow for flexibility for the patient.   

The most important aspect to displacement is that it should be present in the models 

because it contributes to the overall flexibility of the shank which can mimic natural ankle 

movement.  Decreasing the displacements is a positive influence, but it should be taken into 
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consideration that displacement should still be present in the models to provide this flexibility.  

As the diameter and rib length increase, the displacements decrease; however, this makes the 

design more rigid and less like the natural movement of walking.   

Material Analysis 

 Through an analysis of the displacement and the von Mises stresses present with the 

sixteen models tested within COSMOSWorks, conclusions have been made regarding an 

increase in diameter and increase in rib length and their positive effect on the shank models.  In 

an ideal world, this change to the fabrication could be easily made; however, other factors are 

important to consider, such as the amount of material used in the fabrication.  The material 

used by CIR is 61 cm by 122 cm and it is cut into 3 even trapezoidal shapes for use with three 

monolimbs.  This is done because CIR is focused on providing low cost prosthetics for third 

world countries and the material needs to be used in such a way as to minimize material waste 

to decrease costs.  Each monolimb requires a 51 cm by 20 cm side trapezoidal piece for 

fabrication.  In order to determine which models that were tested could be made with these 

size parameters, the following chart has been made.  The outstretched length was calculated by 

finding the perimeter of the circle and adding twice the rib length.  This accounted for the 

material on each side of the monolimb being pressed together to form the rib on the posterior 

end of the shank.  The lengths which lie beyond the 200 mm limit have been highlighted with 

red text.  
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Table 19: Material Length Requirements 

Diameter (mm) Rib Length (mm) Outstretched Length (mm) 

43.5 0 136.6592804 

43.5 10 156.6592804 

43.5 20 176.6592804 

48.5 0 152.3672437 

48.5 10 172.3672437 

48.5 20 192.3672437 

53.5 0 168.075207 

53.5 10 188.075207 

53.5 20 208.075207 

58.5 0 183.7831702 

58.5 10 203.7831702 

58.5 20 223.7831702 

63.5 0 199.4911335 

63.5 10 219.4911335 

63.5 20 239.4911335 

This table shows that the 63.5 mm shanks with 10 mm and 20 mm rib lengths lie outside 

of the boundaries of the available material; however, if CIR could add 1 cm of material for each 

monolimb and purchase sheets of material that are 124 cm wide and 51 cm long, CIR could 

apply the largest set of parameters, which is a 63.5 mm OD shank with a 20 mm rib.  

Next, the elliptical shank perimeters were found in order to determine the amount of 

material necessary to fabricate prostheses with the same widths and lengths as the models.  

This has been included as Table 20.  With a minor diameter greater than 48.5 mm, the elliptical 

shank perimeters are all above the maximum 200 mm, which demonstrates that the elliptical 

cross section would require more material than their circular counterparts.   

Table 20: Elliptical Shank Perimeters 

Minor Diameter (mm) Perimeter (mm) 

48.5 185.66 

53.5 207.03 

58.5 239.72 

63.5 260.19 

Another important factor that needs to be taken into account is the cost of producing a 

larger monolimb.  Although thermoplastic sheets are sold in many different dimensions, 

purchasing thermoplastic sheets that are not of standard sizes can call for a sudden increase in 



 

 

84 
 

price.  As CIR is a non-profit organization that produces low-cost prosthetics, these prices are 

very important.  Therefore, it would not be worthwhile to increase the dimensions of the sheet 

if it would cause a decrease in the number of devices produced by CIR.  This makes the 

maximum length for a shank 200 mm as it complies with the material sheet parameters 

currently being used in their outreach programs. 

In order to determine the feasibility of the manufacturing and use of the circular and 

elliptical models, the mass values were found for each model. Note that these values represent 

only the shank portion of the monolimb, and do not include the metal insert and the socket.   

“Although previous research was not able to conclude an optimal weight of a prosthesis…some 

studies indicated that lightweight provided by a monolimb is welcomed by amputees” (Lee 

2006).  Through this background research, it was determined that there is not a specific limit for 

weight; however, the lighter the monolimb, the more comfortable the patient’s experience.   

Table 21: Circular Shank Weight 

Mass  (kg) 0mm Rib 10mm Rib 20mm Rib 

48.5D 0.204 0.234 0.264 

53.5D 0.228 0.258 0.288 

58.5D 0.251 0.281 0.311 

63.5D 0.284 0.314 0.344 
 

Table 21: Circular Shank Weight displays the mass of each circular monolimb.  These values 

were calculated by multiplying the cross sectional area by the shank length to find the volume 

and then multiplying this value by the density of the polypropylene copolymer.  The current 

monolimb used by CIR is 53.5 mm with a 10 – 20 mm rib length.  The average value for this 

monolimb is about 0.27 kg, which is roughly .6 pounds.  This was used as a measure for 

comparison between the shanks to ensure that the mass value is not much higher than the 

current weight of the monolimb.   The highest mass found was the 63.5 OD with 20mm rib 

which was 0.344 kg.  This value is roughly 25% higher than the current weight of the monolimbs 

distributed by CIR.  This weight gain still provides CIR with a shank which is three quarters of a 

pound.   
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Table 22: Elliptical Shank Weight 

Minor Diameter Mass (kg) 

48.5 mm 0.264 kg 

53.5 mm 0.296 kg 

58.5 mm 0.327 kg 

63.5 mm 0.357 kg 

The table above, Table 22, displays the mass values for the four elliptical models.  These 

values were solved for in the same fashion as the circular models.  The volume was found for 

the elliptical shape and the density properties of the polypropylene copolymer were used to 

find the mass of the shank.  The masses are still below 0.4 kilogram, which is equivalent to 

about 0.9 lb. The weights of the elliptical shanks are comparable to the weights of circular 

shanks of the same diameter with 20 mm ribs.   

The information displayed throughout this report has shown that a rib length between 

10mm and 20mm is very beneficial to CIR.  This range contributes to decreases in displacement 

and overall stress distributions throughout the shank.  An increased diameter has also shown to 

be beneficial in the fabrication of the monolimb.  In order to continue to utilize the 

thermoplastic sheets that are currently purchased by CIR, a model with a 53.5mm OD and a rib 

length of 15mm could maximize material use.   

Based on the analysis described above, the elliptical shanks have demonstrated the 

ability to substantially lower von Mises stress values with a more consistent distribution of 

stresses between Loading Conditions I and II; however, the masses associated with the elliptical 

are on the higher end of the weights when compared to the circular models.  Although a 

decrease in stresses and displacement is important, the other factors contributing to the 

properties of the monolimb cannot be disregarded.  The weight of the monolimb contributes to 

the overall comfort of the patient and was considered before making final recommendations.  If 

the stresses are lower than the Yield Strength under the ISO Test Standard Loading Conditions, 

the model is deemed appropriate for use in the field.  
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Another aspect to the monolimb which should be addressed is the insertion of the 

aluminum bushing.  This metal piece is used to attach the foot to the monolimb, making it a 

vital portion of the monolimb.  Currently, the mandrel rests on top of the aluminum bushing 

during fabrication, which centers this piece within the shank.  If an elliptical shank were to be 

adopted, the aluminum bushing size and shape would also need to change as the interface 

between the shank and the aluminum bushing needs to be a tight fit to ensure that the 

connection between the foot and the monolimb is as rigid as possible.   

For fabrication of a monolimb of a differing diameter or elliptical shape, CIR would first 

need to acquire mandrels of different sizes.  The thermoplastic sheets would still be wrapped 

around the mandrel during the fabrication process.  One of the negative impacts of an increase 

in shank diameter is the necessity of larger mandrels.  These would need to be distributed to 

the outreach program locations to ensure that the new design was being implemented. 

The information displayed throughout this report has shown that a rib length between 

10mm and 20mm is very beneficial to CIR.  This range contributes to decreases in displacement 

and overall stress distributions throughout the shank.  An increased diameter has also shown to 

be beneficial in the fabrication of the monolimb from their current design is necessary to 

comply with the ISO Test Standard 10328.  The current design did not pass the von Mises failure 

criteria under the specified loading conditions.   

The elliptical models show drastically lower von Mises values with a more consistent 

distribution of stresses throughout the different model dimensions for Loading Conditions I and 

II; however, the weight is higher for the 58.5 mm and 63.5 mm minor diameters than that of 

their circular shank models of the same diameters.  Although a decrease in stresses and 

displacement is important, it can also lead to a more rigid design, which does not allow for 

flexibility throughout the shank.  A drastic decrease in overall stresses is not necessarily 

required to produce a valuable monolimb as the shank was considered to successfully 

withstand the applied loading conditions if the stress values were below the Yield Strength.  

Furthermore, the increase in weight between the elliptical shank and the circular shank 

models makes them a less attractive option for CIR.  The increase in weight will not allow the 

necessary amount of flexibility throughout the shank and would also require an increase in the 
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material sheet size properties.  The circular model currently used by CIR was not found to 

successfully withstand the ISO Test Standard 10328 loading conditions for a P5 test.  Due to 

these results, it is highly recommended that CIR uses 58.5 mm circular shank with a 20 mm rib 

length or a 63.5 mm circular shank with either a 10 mm or 20 mm rib length.  These three 

models were the only models within the parameter study that reported von Mises stresses that 

were lower than the Yield Strength.  

 
 



 

 

88 
 

Conclusions 
 

 Through an analysis of circular and elliptical models, several trends regarding the 

parameters of each of these and the resultant displacement and von Mises stresses have been 

demonstrated.  The COSMOSWorks contour plots provided information regarding the von 

Mises stresses as well as the displacement values through each of the sixteen models that were 

tested.   

 The von Mises stresses were shown to decrease as the diameter increased.  Also, the 

von Mises stresses decreased as the rib length increased, which demonstrated that the rib 

length is a positive addition to the overall design of the circular shank.  The elliptical models 

that were tested measured the lowest von Mises stresses when compared to the stress values 

of circular shanks of the same diameter as the minor diameter of the elliptical shanks. The 

models were all compared to the Yield Strength of the material used to fabricate the monolimb 

in order to determine whether or not the models exceeded the stress limit under the ISO 

loading conditions. 

 The von Mises stresses of the majority of the models did not pass the von Mises failure 

criteria, which means that under the ISO Test Standard 10328 loading conditions, models of this 

height and with the varying parameters would not be deemed appropriate for use in the field.  

The 58.5 mm shank with a 20 mm rib length; 63.5 mm shank with a 10 mm and 20 mm rib 

length all had stresses below the Yield Strength of the polypropylene copolymer for both 

loading conditions.  This demonstrates that these three models can be successfully used in the 

field under the ISO Test Standard criteria.  These models have been recommended to CIR as 

possible changes to their current prosthetic design.   

 The displacement values were analyzed through several different avenues.  First, the 

resultant displacement was found for each of the diameters to determine how the addition of 

the rib affects the displacement values. In order to determine the effect of the bending loads, 

the in-plane displacement was calculated and the maximum values for each model were 

compared graphically.  Through this graphical analysis, it was determined that the displacement 
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decreases as the diameter increases.  Although a decrease in displacement is important, it is 

important to ensure that some displacement is still present throughout the model as this 

contributes to the flexibility of the shank and its ability to simulate natural ankle movement.  

Similarly, the out-of-plane displacement was analyzed to determine the presence of torsion 

within the models.  The out-of-plane displacements were much lower than the in-plane 

displacements, which confirmed that the bending loads had a much more substantial effect on 

the resultant displacement in the shanks.   

 Finally, the amount of material needed to fabricate the shanks was determined because 

CIR uses 61 X 122 cm sheets of material to cut a trapezoidal piece that is used to fabricate three 

monolimbs.  This is done to minimize wasted material as well as keep the costs as low as 

possible.  Through this analysis, several of the larger circular models would require a slight 

increase in material in order to account for the increase in diameter and/or rib length. The 

elliptical shanks were on the heavier end for each diameter.  An increase in weight can 

negatively impact the performance of the monolimb for the patient because a heavier 

monolimb and requires more energy to walk with.  It is important to decrease the von Mises 

stresses and displacement without increasing the weight.  As the elliptical shanks have been 

reported to be roughly the same mass as the heaviest circular models, the elliptical shanks were 

deemed less appropriate for CIR’s low cost prosthetic outreach programs despite their positive 

effect on von Mises stresses and displacement.   

Recommendations 
 

 It is being recommended to CIR to continue to use the hollow cylindrical model with a 

rib design within their programs.  The presence of the rib allows for a decrease in both von 

Mises stresses as well as displacement.  An increased diameter would substantiate the 

monolimb, as the 58.5 mm shank with a 20 mm rib and the 63.5 mm shank with a 10 and 20 

mm rib all pass the von Mises failure criteria under the ISO Test Standard 10328 specified 

loading conditions.  The other models have not been validated to withstand the loads without 

surpassing the Yield Strength of the polypropylene copolymer.   Therefore, it is being 
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recommended that at 58.5 mm shank with a 20 mm rib should be adopted as it requires a slight 

increase in amount of material, but it does not increase the weight enough to change the 

performance of the monolimb and this model successfully withstood the ISO Test Standard 

Loading Conditions.  

 The feasibility of a change in mandrel size should be investigated further to determine 

whether or not this change would be cost appropriate for CIR.  Also the interface between the 

aluminum bushing and an elliptical shank should be further investigated as the elliptical shank 

substantially decreased the von Mises stresses and had displacement values which remained 

fairly consistent for both Loading Condition I and II.  
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Appendix A: History of Prosthetics 
 

 The history of prostheses dates back to a time in the BC era.  There has always been a 

need for humans to feel whole and complete; however when a body limb is missing, this feeling 

of completeness is missing as well.  To satisfy this need, humans began to design devices to 

artificially replace the missing limb.  For a lower limb, these devices were originally a peg design 

in order to provide the necessary support.  A hook design was used for a missing hand, which 

gave the client some function and use of an extension of the arm.  As the years progressed, the 

design capabilities advanced.  Prosthetic devices were built into the armor that was worn for 

battles.  This often was simply a continuation of the metal to make the upper limbs symmetrical 

and lower limbs symmetrical.  This allowed the user to have a balanced feeling armor, even if 

there was nothing underneath. 

 The advancement of prostheses continued into the Renaissance period.  This was an era 

of rebirth and rediscovery for prosthetic devices.  There was a major discovery in regards to 

independent joint movement and control.  Designers were experimenting with spring loaded 

joints to allow for a smooth return.  This was a new feature that gave the user freedom to bend 

at the joint.  This was especially helpful for upper arm and upper leg prostheses, in which the 

elbow and knee joints, respectfully, were impacted. 

 The 16th century was a time for great advancements due to a French army surgeon, 

Ambroise Paré.  He was a very skilled surgeon and was capable of performing successful 

surgeries in a very timely manner.  In working with the army at a time of frequent battles, he 

had to amputate a large number of limbs.  He had approximately 30 seconds to amputate the 

limb, and 3 minutes to complete the surgery.  There was no availability of anesthesia or 

tourniquets it this time and he had to complete all surgeries without an aide.  Paré had the 

ability to invent both upper and lower limb prostheses, showing promise of basic function.  His 

above the knee prosthesis included a kneeling peg leg, with an adjustable harness, and a foot 
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prosthetic addition.  This lower limb prosthesis included a knee lock control, which was the first 

in the history of prostheses. 

 Medical advancements in the period from 1600-1800 helped to increase the surgery 

survivor rate.  Great strides were taken for modern medical practices including: tourniquets, 

anesthesia, analeptics, blotting styptics, and disease fighting drugs.  During this time, 

amputations were becoming a more accepted solution to a severe wound suffered during 

battle, as opposed to an effort to quickly save a life.  More time and attention was given to the 

surgeries, which allowed for cleaner amputations and better fit prostheses.  Antiseptic 

techniques were not adopted until the end of the 19th century.  This delay in cleanliness 

resulted in a higher mortality rate, especially for amputee patients.  There is a saying in 

reference to the sanitation during this time, “it was safer to have a limb amputated by gunfire 

than by a surgeon”. 

 Also during this time period, there were advancements in prostheses, which were 

largely due to two men.  In the 17th century, the Dutch surgeon, Pieter Andriannszoon Verduyn 

brought the belief that function was more important than aesthetics when he invented the first 

non-locking, below the knee prosthesis.  This device featured external hinges, leather cuffs, and 

was lined with leather.  The prosthesis was made of a copper shell and a wooden foot.  

Verduyn’s device served as a starting point for Dr. Benjamin F. Palmer, who added an anterior 

spring and concealed tendons, which helped with the fluidity of the motion.  Palmer also 

focused on giving the device a smoother appearance to combine both function and aesthetics.  

Palmer’s prosthesis was honored at the 1851 London World’s Fair because “it imparted a life-

like elasticity and firmness to the step”.  

 The Civil War era (1861-1865) brought about the creation of more advanced prostheses.  

In 1863, Dubois D. Parmlee designed a device with a suction socket, polycentric knee, and a 

multi-articulated foot.  In 1912, Marcel Desoutter invented a prosthesis that later became a 

foundation for the Hanger company.  He was an English aviator who lost his leg in an airplane 

accident and developed the first aluminum prosthesis. This was further developed by Hanger, 

who was promoting the use of pelvic suspension versus shoulder suspension.  The Hanger 
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Company found that the pelvic suspension was much more efficient and stable.  This realization 

led to important control systems, such as the knee brake.  

 The World War I era (1914-1918) provided a great opportunity for the advancement and 

organization of prosthetists.  The European prosthetists had an extreme increase in 

experimentation as they had ten to twenty times more amputees in their armies than the US 

Army did.  This influenced the Surgeon General of the US Army to invite US prosthetists to 

Washington, DC to discuss the current technologies and developments.  This meeting was a 

great occasion for the development of prostheses including: ethical standards, scientific 

programs, educational programs, and establishing relationships with other health professionals.  

This forum resulted in the creation of the American Orthotics and Prosthetics Association 

(AOPA). 

 The Belgian prosthetist, Dr. Martin, began to emphasize the connection between 

prosthetic devices and the anatomy and physiology of the human leg.   He could produce both 

the static and aesthetic appearances.  He created a modified cast of a residual limb and used 

the measurements from this cast to develop his prosthesis.  This focus on appearance 

influenced future prosthetists in their designs, as this had never been a focus before Martin.  

 The developments and technologies brought about in the 1940s have had a great affect 

on the prosthetic world as it is today.  In 1945, Normal Kirk, Surgeon General of the United 

States Army, requested that the National Academy of Sciences (NAS) investigate the prosthetic 

state of the art.  General Kirk, in conjunction with the NAS, created the Committee on 

Prosthetic Devices (CPD) for US health professionals.  The purpose of this committee was to 

provide leadership and coordination among the nation’s leading specialists.  The committee 

strived to join together health professionals, physicians and surgeons, with engineers and 

technical support to aid in the improvement of the quality of life of people with disabilities.  In 

1946, General Kirk brought a team of engineers and surgeons to Europe to learn about the 

European advancements regarding prostheses.  This visit demonstrated how far behind the US 

was in terms of development, which helped the US to focus on the development and 

organization of disability services.  In 1947, the University of California Berkeley held 
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educational seminars on the prescription, fabrication, and alignment of above the knee 

prostheses.  

  A Congressional Act was passed in 1948 that allowed the Veterans Administration (VA) 

to fund research and development programs in the US.  The first facility that was opened was 

the Veterans Administration Prosthetic Center (VAPC) in New York.  It was made available to 

both veterans and the general public in the greater New York City area.  The staff included a 

large number of engineers, physicians, and prosthetists who had a desire to improve prosthetic 

design and construction.  The VA also opened the Prosthetics and Sensory Aid Service (VA-

PSAS) at its Central Office in Washington, DC.  This center oversaw the orthotics and prosthetics 

services at VA hospitals throughout the United States.  The VA, in cooperation with the 

Department of Health, Education and Welfare (H.E.W.) and the Armed Services also began the 

Artificial Limb Program, which established numerous research laboratories throughout the 

nation.   

 The creation of higher education prostheses programs began in the 1950s.  The first 

institution to offer a course was the University of California Los Angeles (UCLA) when, in 1956, 

they began formal above the knee prosthetic courses.  At about the same time, the VA 

established a prosthetic post graduate program at New York University (NYU).  In 1959, 

Rehabilitation Services Administration and H.E.W. established a prosthetic program at 

Northwestern University in Chicago, Illinois.  This decade was a great time for universities to 

display the many advancements they had made.  In 1956, the University of California 

introduced the SACH foot, which has a wooden heel wrapped in rubber, with a rubber cushion 

heel (Gailey, 2005).  In 1959, the PTB prosthesis was created at the University of California 

Berkeley.  This device has a soft lined socket which completely covers the stump and attaches 

to the shank of the prosthesis (Muilenburg, 1996).  

The latter half of the 1950s proved to be an important period for leadership and 

organizations.  During this time, the Committee on Prosthetic Research and Development 

(CPRD) was developed with the goal of providing leadership in the world of prostheses.  This 

committee was comprised of solely volunteer medical and engineering personnel.  The focus of 

the committee centered on amputations, artificial limbs,  rehabilitation engineering, and 
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assistive technology.  The CPRD combined true leaders in the industry and provided them with 

the chance to exchange research ideas, evaluate devices, and discuss publications regarding 

such topics.    

The Social and Rehabilitation Services (SRS) funded physical medicine and rehabilitation 

programs.  The SRS also developed the Rehabilitation Research and Training Centers (RRTC), 

which received grants to support training programs for health professionals.  According to the 

RRTC, the important objective regarding prosthetic devices was to research and advance the 

technologies. 

The growth and development of prosthetic devices has continued to flourish into the 

present.  There are many companies and organizations throughout the world that focus on the 

improvement of the lives of people with disabilities, with a special focus on their mobility.  The 

patient plays an even greater role for the design and manufacturing of the device.  Technology 

levels have a wide range: from high tech devices for paralympians, to low tech devices for 

developing countries.  No matter the audience, all prosthetics are designed with the common 

goal to provide a comfortable and functional prosthesis that allows the user to live a “normal” 

lifestyle.   
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Appendix B: Center for International Rehabilitation (CIR) 
 

The Center for International Rehabilitation (CIR) is a Chicago based non-profit 

organization, whose mission is “to assist people with disabilities worldwide in achieving their 

full potential” (CIR 2007). The creation of the CIR began in 1996 when Dr. William Kennedy 

Smith founded the organization Physicians Against Land Mines (PALM).   In 1997, one year after 

its inception, this organization received the Nobel Peace Prize.  The CIR was opened in 1998 by 

PALM to expand its facilities to include victim assistance in rehabilitation services and advocacy.  

The center is now present in six countries, educating over seventy students to date who treat 

approximately 8,600 amputees yearly. 

   The CIR has created a Rehabilitation Engineering Research Center (RERC) which has 

been titled a “national center of excellence in rehabilitation engineering” by the National 

Institute of Disability and Rehabilitation Research (CIR 2007).  This program works to develop 

new technologies and techniques to improve access to mobility aid for survivors of landmines 

and other amputees.  The program focuses on technologies that are appropriate for use in 

regions with limited technical and human resources.   

 The CIR has been developing the “Comprehensive and Integral International Convention 

to Promote and Protect the Rights and Dignity of Persons with Disabilities”.  There are over 

forty disability organizations working toward the creation of this UN treaty.  The organizations 

are all members of the International Disability Caucus, of which the CIR is a founding member.  

The CIR is also an active part of the International Disability Right Monitor Program.  This 

program includes a network of researchers in over 30 countries who are working to collect data 

and report on the experiences of people with disabilities throughout the world. 

 The International Disability Educational Alliance Network (IDEAnet) website was 

officially launched by the CIR in 2005.  The mission of IDEAnet is “to foster collaborative efforts 

to use distributed learning and telemedicine to address health disparities and foster effective, 

sustainable health services” (CIR 2007).   This mission may be achieved through the two 

communities within the network: the Rehabilitation Services Community and the Tele-Medicine 

Resource Center.  Tools such as forums, chats and document sharing are used to promote idea 

sharing and to generate strategies to improve health services worldwide.    
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 There are currently four collaborative projects in process on the IDEAnet website.  These 

projects are broken down into two categories: appropriate technology and education.  The 

appropriate technology groups work on technologies that can meet economic, cultural, 

financial and functional needs of people with disabilities.  The first project utilizes the RERC to 

“Improve Technology Access for Landmine Survivors”.  The second is a “Project on International 

Guidelines for Wheelchair Provision”.  This project is to develop guidelines that focus on the 

education, training, design, and service provisions to meet the needs of wheelchair users 

around the world.   

 The education category also includes two projects. The first is an “International Model 

Curriculum Consortium which focuses on creating a model distance learning curriculum.  This 

will lead to improved care and quality of life for amputees.  Second is the “Train the Trainer 

Project” whose goal is to help prosthetic educators train each other and advance ideas.  It 

allows the members to offer advice, support, and constructive feedback on each other’s ideas.  
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Appendix C: Programs for Third World Countries  

Mobility India 

 

Recognizing that millions of people undergo amputations every year due to trauma and 

the majority of these people being unable to afford the aid they require, Chapal Khasnabis 

formed an organization called Mobility India.  Mobility India (MI) was formed in South India in 

1994 to provide rehabilitation services in rural, poverty-stricken areas of India.  The bulk of 

their projects center on providing low cost prosthetic devices to those who are normally unable 

to afford them.  The underlying goal of this organization is to produce “an inclusive society 

where people with disabilities have equal rights and a good quality of life” (Mobility India).  

MI has a large research and training center called “Millennium Building on Disability,” 

which is a modern disability accessible building where training with orthotics, prosthetics, and 

rehabilitation can be received.  These programs are used to train people in methods for 

prosthetic construction in order to give them the necessary tools to reach out into the 

community and provide for the less fortunate individuals who require prosthetic limbs.  The 

students receiving this training are often from low income families in rural areas and urban 

slums.  Once they have finished the training, they will work in their local area to help people 

with disabilities  

Their current project is the development of a lower limb prosthetic which has been 

broken up into components.  This device comes in a kit, making it easier to assemble in rural 

areas.  The pylon has been made in several sizes to maximize the number of heights it can 

accommodate.  Also, the varying pieces can be adjusted slightly to increase the comfort of the 

patient.  Through the implementation of this system, MI is aiding the less fortunate amputees 

in various areas of India (Mobility India).   

Handicap International 
 

 Handicap International (HI) is a global program which is providing amputees in third 

world countries with the means to walk again after a traumatic misfortune.  This organization 
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has been providing for impoverished victims of accidents who are in need of rehabilitation 

services at a low cost since 1982.  Currently, they have 240 programs in nearly sixty different 

countries.   

HI uses prosthetic devices and rehabilitation to put people who have been injured back 

on the road towards independent living.  HI recognizes that their program cannot be 

implemented the same in every environment and in turn work hard to adapt each project to 

the local capabilities.  Whatever technology is used for the project, HI provides prostheses, 

orthoses, and other orthopedic devices needed to successfully aid the local people.  The 

training is provided by HI through local health structures to ensure that the system is 

sustainable once HI is no longer active in that area; orthopedic centers are created in this way.  

To ensure the best services possible, training is also provided for people to become well versed 

in physical therapy, occupational therapy, and speech therapy.  Once they are educated, they 

are then able to assist the patients with the necessary therapy to adjust to their new prosthetic 

or orthotic device. 

Beyond prosthetic devices, in the case of an emergency or natural disaster, HI will give 

assistance and aid to the affected people in the form of home redevelopment, education, 

supplies, and other activities.  They are also proactively working to prevent the use of 

landmines.  Further, they are continually campaigning for disability inclusion in all areas 

including basic rights and accessibility (Handicap International, 2007).   

Helping Hands for Haiti 
 

 Helping Hands for Haiti (HHH) is an organization that is providing quality rehabilitation 

services for the physically disabled in Haiti.  Their underlying goal is to give the people of Haiti 

the tools necessary to implement the production and distribution of prosthetic devices in their 

local area on their own.   HHH accomplish this goal by offering rehabilitation education, clinical 

treatments, disability prevention projects, and public awareness of disabilities and proper 

rehabilitation.  With a heightened awareness of how to care for the disabled people, Helping 

Hands for Haiti foresees the treatment of the disabled people in Haiti to change in a positive 

way through more respect and general care.   No one with financial difficulties will ever be 
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turned away; HHH will make sure that their services are equally available for anyone who needs 

them (Helping Hands for Haiti, 2007).      

Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS) 
 

 Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS) was established in India in 1975 as 

a non-profit organization dedicated to helping the physically challenged who could not afford 

the technology they needed to account for their disability.  BMVSS has fitted the largest 

number of artificial limbs to the handicapped in the world.  They have provided these artificial 

limbs, calipers, crutches, wheel chairs, tricycles, and many other handicapped appliances for no 

cost whatsoever.  BMVSS provides the training, facilities, and devices necessary to aid those in 

need.  They provide everything from prosthetic limbs to hearing aids and shoes.  They offer a 

broad range of programs for people with disabilities and they are leaving a lasting impact on 

developing countries throughout the world.  Their most well known prosthetic device is the 

Jaiper foot (BMVSS, 2007).  

 

Prosthetics Outreach Foundation 
 

Prosthetics Outreach Foundation (POF) is working around the world to provide 

disadvantaged amputees and others suffering from disabilities the tools they need to restore 

their mobility.  Recognizing that there are many tragic injuries throughout the world, 

particularly in countries which have been war torn, POF has dedicated their time to restoring 

the victims’ mobility and independence.  Their main outreach areas are currently Vietnam, 

Bangladesh, and Sierra Leone.  Within the last fifteen years, POF has helped more than 13,000 

children and adults regain their independence through providing them with the devices they 

need to be mobile again (POF 2007).  

Their main activities involve clinical outreach to amputees, orthopedic surgical 

assistance, and local prosthetic and orthotic manufacturing training in remote areas of the 

world.  The underlying goal of these projects is to provide these low income societies with the 
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tools and training they need to continue to provide aid for disabled persons without the 

continuous help of POF (POF 2007).  

An example of one of the POF projects is being implemented in Vietnam.  The materials 

used in all of their projects are locally found resources to ensure that the artificial limbs stay 

low cost and easy to continue to fabricate in the future without dependence on POF to provide 

the materials.  The U.S. Agency for International Development (USAID) has given aid to POF to 

catalyze the programs in different countries.  In each country, an area specific manufacturing 

process and prosthetic device are developed.  For example, in Vietnam, a foam foot which had 

previously been used in other countries was deteriorating due to the humid climate.  POF 

developed a water resistant rubber foot instead to be manufactured and distributed around 

Vietnam (POF 2007).   
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Appendix D: Circular Shank Parameter Combinations 
 

Table 23: Circular Shank Parameter Combinations 

Shank Length Diameter (mm) Rib Length (mm) 

360 mm 

(380 mm,  including plate) 

48.5 0 

48.5 10 

48.5 20 

53.5 0 

53.5 10 

53.5 20 

58.5 0 

58.5 10 

58.5 20 

63.5 0 

63.5 10 

63.5 20 
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Appendix E: Analytical Stress Calculations Procedure 
 

To provide more validity to our computer modeling and finite element analysis, stress 

calculations have been performed by hand and compared to the COSMOSWorks data output 

values.  This analysis was performed on a monolimb that has a diameter of 53.5 mm, a shank 

length of 360 mm, a material thickness of 5 mm, and a rib length of 0 mm.  The stresses that 

were found to contribute to the normal stresses in the u direction, σ f, are the axial normal 

stresses which are the product of the load in the u direction, the bending stresses caused by the 

load in the u direction, and the bending stresses caused by the load in the u direction. Each of 

these stresses were calculated separately and then added together, which was an appropriate 

approach due to the principle of superposition. Once this stress value was calculated by hand, 

the model was run in COSMOSWorks and the point where the stresses had been calculated was 

probed in the model to determine the stress value output by the computer analysis.  

 First, the normal stresses were found by first determining the axial reactionary load to 

the offset load in the f direction. Once this value was found through a static analysis, the area 

was calculated using the following equation.  

 

Once the area had been found, the reactionary force and the calculated area were input into 

the equation below to solve for the normal compressive stresses.  

 

 There are also bending stresses that occur from the load in the u direction and these 

were calculated through the following steps. The overall equation for bending is included 

below. 

 

First, the moment was calculated by multiplying the load by the moment arm.  

 

Next, the second moment of area was calculated through the following equation:  
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Finally, the “c” value in the equation represents the distance of the point where the stresses are 

being measured from the neutral axis. The stress is being calculated at the outer diameter, 

making the value .02675, which is the outer radius of the shank. Finally, each of these 

components were combined into the original bending stress equation. 

The next bending stresses which were found to contribute to the normal stresses in the u 

direction at the chosen point were caused by the f load. The same steps were followed as 

described above; however, the numbers were altered to correspond to the f load. The updated 

equation has been included below.  

 

Finally, each of these components were added together to determine the total normal stresses 

present at the point 10 mm above the top of the plate and on the frontal side of the shank.  

 

This calculated stress value was then compared to the value found at this point in 

COSMOSWorks.  
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Appendix F: Analytical Stress Calculation Results 
 

Following the procedure detailed above, the normal stresses in the u direction were calculated 

to verify the validity of the values output from COSMOSWorks. First, the normal stresses were 

investigated and after a static analysis on the monolimb with the u load being applied, the 

reactionary force was found to equal the u load. Therefore, the normal axial stresses would be 

the quotient of the reactionary force and the cross sectional area. The equation below details 

the steps taken to calculate these normal stresses.  

 

 

The area of the cross section was calculated by the below equation.  

 

The quotient of these has been calculated as follows and the negative sign demonstrates that 

the normal stresses are compressive.  

 

 There are also bending stresses that occur from the load in the y direction and these 

were calculated through the following steps. The overall equation for bending is included 

below. 

 

First, the moment was calculated by multiplying the load by the moment arm.  

 

Next, the second moment of area was calculated through the following equation:  

 

Finally, the “c” value in the equation represents the distance of the point where the stresses are 

being measured from the neutral axis. In this case, that value is .02675 m. When each of these 

components was combined into the original bending stress equation, the following value was 

obtained: 
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The next bending stresses which contribute to the normal stresses in the y direction at the 

chosen point are caused by the z load. The same steps were followed, but with numbers which 

correspond to the z load. The process has been included below.  

 

The moment arm was calculated, using the same equation as above, but using the z load 

component.  

 

The second moment of area remains the same.  

 

Each of these components was added together to determine the total normal stresses present 

at the point 10 mm above the top of the plate and on the frontal side of the shank.  

 

 This point on the model was probed in COSMOSWorks to be  and can be 

visually seen in the figure below, Figure 46. This stress value contributes to a 3.47% error when 

compared with the calculated value. With such a low percentage of error present between the 

hand calculations and the value calculated in COSMOSWorks, the COSMOSWorks values have 

been determined to be accurate enough to continue with the investigation.   



 

 

110 
 

 
Figure 46: U Normal Stresses 
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Appendix G: von Mises Stress Contour Plots 

Loading Condition I:Circular Shank: 53.5 mm Outer Diameter 

The stress plots, shown below as Error! Reference source not found. visually displays 

the stress distributions throughout the shank with each of the set of parameters for this outer 

diameter: with no rib, a 10 mm rib, and a 20 mm rib, displayed respectively from left to right.  

In the figure below, the contour plots have been displayed next to each other to better 

compare the differences between the three shanks with the same outer diameter and differing 

rib lengths.  It is important to note the similarities between these stress plots, particularly 

throughout the pattern of the stress distributions throughout each shank.  There is a maximum 

area of stress 180 degrees from the load location, which is displayed as a red area and the 

stresses lessens as they get further away from this point.  

 

 
Figure 47: 53.5 mm OD von Mises Stress Contour Plots 

 

53.5 mm OD 20 mm rib 53.5 mm OD 10 mm rib 53.5 mm OD 0 mm rib 
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Looking at the three contour plots, the stresses found at the specified point decrease as the 

length of the rib increases, as shown in the table below, Table 14.   

Table 24: 53.5 mm OD von Mises Stress Values (Loading Condition I) 

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 
I (Heel Strike) 3.666*107 N/m2 3.200*107 N/m2 2.889*107 N/m2 

Yield Strength 3.07*107 N/m2 

For this shank diameter, the 20 mm rib length model is the only one whose stress value lies 

below the Yield Strength.   

Circular Shank: 58.5 mm Outer Diameter 

 In the below contour plots, Error! Reference source not found., an area where 

maximum stresses are present can be seen on the anterior region of the shank, as shown in the 

front views from COSMOSWorks.   

 
 

Figure 48: 58.5 mm OD von Mises Stress Contour Plots (Loading Condition I) 

58.5 mm OD 0 mm rib 58.5 mm OD 10 mm rib 58.5 mm OD 20 mm rib 
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The values of these stresses are low enough to fall below the Yield Strength in the models with 

10 mm and 20 mm rib lengths; however, the stress value is 5% higher than the Yield Strength in 

the model with a 0 mm rib length.   

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 

I (Heel Strike) 3.215*107 N/m2 2.212*107 N/m2 2.062*107 N/m2 

Yield Strength 3.07*107 N/m2 
 

Circular Shank: 63.5 mm Outer Diameter 

The contour plots for the 63.5 mm OD have been included below as Error! Reference 

source not found..  The overall stress distribution follows a similar trend to that of the 53.5 mm 

OD with an area of maximum stresses lying 180 degrees from the load location and the stress 

values decreasing as the distance from this area increases. The maximum stresses are all at 

least 36% lower than the Yield Strength, demonstrating that they pass the von Mises stress 

failure criteria by successfully withstanding the applied loads.  The stress values also decrease 

as the rib length increases. These values can be better seen through Error! Reference source not 

found..  

Table 25: 63.5 mm OD von Mises Stress Values (Loading Condition I) 

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 

I (Heel Strike) 1.962*107 N/m2 1.843*107 N/m2 1.759*107 N/m2 
Yield Strength 3.07*107 N/m2 
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Figure 49: 63.5 mm OD von Mises Contour Plots (Loading Condition I) 

63.5 mm OD 20 mm rib 63.5 mm OD 10 mm rib 63.5 mm OD 0 mm rib 
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Circular Shank: 53.5 mm Outer Diameter 

 The von Mises stress contour plots for shanks with a 53.5 mm OD and rib lengths of 0 

mm, 10 mm, and 20 mm have been included respectively below for visual comparison of the 

stress distributions.  

 

 

 
 

Figure 50: 53.5 mm OD von Mises Contour Plots (Loading Condition I) 
The area where maximum stresses are located spans the majority of the frontal region 

of the shank in the model a 0 mm rib.  This area significantly decreases as the rib increases.  

Also, the von Mises stresses are all above the Yield Strength.  A visual depiction of the 53.5 mm 

OD, 0 mm rib has been included below through an isometric ISO Clipping figure from 

COSMOSWorks, Error! Reference source not found..  This feature has only displayed the areas 

where the von Mises stresses are higher than the Yield Strength, which are on the outer 

diameter of the anterior and posterior portions of the shank.  The deformation caused by the 
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loading can also be seen through this feature and it can be observed that there are significant 

levels of deformation present in this model.     

 

Figure 51:53.5 mm OD 0 mm Rib ISO Clipping (Loading Condition II) 

 For each of these models, the von Mises stresses are up to 122% higher than the Yield 

Strength.  These high stresses are most likely occurring because the load location is 122.25 mm 

offset in the f direction from the origin of the model.  With such a large offset, the bending 

stresses increase substantially, causing higher overall stresses throughout the shank.  

Table 26: 53.5 mm OD von Mises Stress Values (Loading Condition II) 

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 
II (Toe Off) 6.842*107 N/m2 4.867*107 N/m2 3.592*107 N/m2 

Yield Strength 3.07*107 N/m2 
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Loading Condition II: 

Circular Shank: 58.5 mm Outer Diameter 

 In the below contour plots, Error! Reference source not found., an area where maximum 

von Mises stresses are presented can easily be seen on the 0 mm rib model.  Although this area 

is present in the 0 mm model, this area is not present in the models with a 10 mm and 20 mm 

rib length.  

 

 

 
Figure 52: 58.5 mm OD von Mises Contour Plots (Loading Condition II) 

 Looking at the values of the probed points on the model in Error! Reference source not 

found., the 20 mm rib length is the only model whose stress value lies below the Yield Strength.  

The model with a 10 mm rib length is 18% higher than the Yield Strength while the model with 

a 0 mm rib length is 123% higher than the Yield Strength, which is more than double the Yield 

Strength.   
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Table 27: 58.5 mm OD von Mises Stress Values (Loading Condition II) 

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 
II (Toe Off) 6.847*107 N/m2 3.609*107 N/m2 2.830*107 N/m2 

Yield Strength 3.07*107 N/m2 

Circular Shank: 63.5 mm Outer Diameter 

The von Mises contour plots for the 63.5 mm diameter for loading condition II have 

been included below as Error! Reference source not found..  These stress plots do not have a 

high stress concentration on the frontal region of the shank and the probed stress values are 

much lower than those of the previous models under loading condition II.  The probed stress 

value lies above the Yield Strength in the shank without a rib; however, the trend of a decrease 

in stress values as the rib length increases is seen, and the stress value is lower than the Yield 

Strength for the models with 10 mm and 20 mm rib lengths.   

 

       

Figure 53: 63.5 mm OD von Mises Stress Contour Plots (Loading Condition II) 
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 The stress values have been depicted again through a table below, Error! Reference source not 

found..  

Table 28: 63.5 mm OD von Mises Stress Values (Loading Condition II) 

Loading Condition 0 mm rib length 10 mm rib length 20 mm rib length 
II (Toe Off) 3.460*107 N/m2 2.802*107 N/m2 2.326*107 N/m2 

Yield Strength 3.07*107 N/m2 
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Appendix H: Displacement Plots for Loading Condition I and Loading 

Condition II 

Loading Condition I 

          
 

Figure 54: 53.5 mm OD Displacement Plots (Loading Condition I) 

53.5 mm OD 20 mm rib 53.5 mm OD 0 mm rib 53.5 mm OD 10 mm rib 
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Figure 55: 58.5 mm OD Displacement Contour Plots (Loading Condition I)  

         

 

58.5 mm OD 20 mm rib 58.5 mm OD 10 mm rib 58.5 mm OD 0 mm rib 

63.5 mm OD 10 mm rib 63.5 mm OD 20 mm rib 63.5 mm OD 0 mm rib 
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Figure 56: 63.5 mm OD Displacement Contour Plots (Loading Condition I)  

Loading Condition II 

            
 

 

Figure 57: 53.5 mm OD Displacement Contour Plots (Loading Condition II) 

         

53.5 mm OD 0 mm rib 53.5 mm OD 10 mm rib 53.5 mm OD 20 mm rib 

58.5 mm OD 10 mm rib 58.5 mm OD 20 mm rib 58.5 mm OD 0 mm rib 
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Figure 58: 58.5 mm OD Displacement Contour Plots (Loading Condition II) 

         

Figure 59: 63.5 mm OD Displacement Contour Plots (Loading Condition II) 

 

 

 

 

 

63.5 mm OD 20 mm rib 63.5 mm OD 10 mm rib 63.5 mm OD 0 mm rib 
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Appendix I: In Plane Displacement Graphs 
 

 
Figure 60: In-Plane Displacement (Loading Condition I) 

 

 
Figure 61: In-Plane Displacement (Loading Condition II) 
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Appendix J: Out of Plane Displacement Graphs 
 

 

Figure 62: Displacement Trends for Loading Condition I 

 

Figure 63: Out-of-Plane Displacement Trends for Loading Condition I 

 

 


